データ・アナリティクス入門

目的明確!振り返りから学ぶ分析術

比較で何を学ぶ? 分析は、比較するところから始まります。ただ単に集計結果をまとめるだけではなく、そこから得られる示唆を示したり、グラフ化して見やすく提示することが求められます。また、分析はあくまで手段であるため、常に分析の目的に立ち返り、手段自体が目的にならないよう注意する必要があります。比較対象としては、目に見えるデータや得やすいデータだけでなく、見えにくい側面も含めて選定することが大切です。 目的設定はどうする? そのため、データをエクセルで加工する前に、まず十分な時間をかけて目的や比較対象を明確にすることが重要です。目的をはっきりさせることで、分析結果の妥当性や有用性を高めることにつながり、関係者の意見を取り入れるなどして、慎重に検討する姿勢が求められます。 何を紙に書く? また、分析を始める前に、目的、比較対象、仮説などを紙に書き出しておくとよいでしょう。作業中は都度その紙を見返し、目的から逸れないよう気をつけます。目的があいまいなまま設定されることが多いため、必要に応じて、事前にまとめた事項を見直しながら分析を進めることが効果的だと考えます。

データ・アナリティクス入門

営業予測を刷新する新アプローチ

フレームワークの効果的な活用法とは? 今回の学びの中で、フレームワークのツールとしてロジックツリーとMECEが紹介されました。ロジックツリーは課題を細分化し、発見しやすくするための手法であり、MECEは問題をもれなく、ダブりなく整理するために必要な概念です。それぞれは様々な場面での分析に利用されますが、今回の復習を通じて今後の活用に向けた理解を深める機会となりました。 営業予測の新アプローチを試すには? 営業予測を行う際には、これまで直感に頼った予測を立ててしまいがちでしたが、今後は課題を分類し、分析した上で予測を立てることを心掛けたいと考えています。この新しいアプローチにより、異なる視点での分析が可能となり、より精度の高い営業予測が期待されます。 MECEを使った分析で得られるものは? これまでは同じ視点でデータを取り出して分析を行っていましたが、今後は課題を洗い直し、顧客の職種や規模、場所など、さまざまな角度からMECEを意識した分析を進めていきます。これにより、売り上げを伸ばすための施策のヒントを得られ、より具体的な情報収集と活用が期待されます。

クリティカルシンキング入門

データを巧みに操る分析の旅

数字の裏に隠れた答えは? 数字の羅列にしか見えないデータでも、多角的に分解し整理することで新たな情報が得られることに気づきました。具体的には、WhenやWho、Howといったカテゴリごとにデータを洗い出し、グラフを用いて数字の変動を追ったり、最大・最小の数値や割合を比較することで、多くの学びがありました。私は特にグラフ化や関数に対して苦手意識を持っていたため、これらを克服してデータ分析の手法を身につけたいと強く感じました。 具体例で何が見える? これらの手法は、主に以下のような場面で役立つと考えています。例えば、産休・育休のデータでは、自部署だけでなく全社や日本社会全体の傾向も分析でき、マネージャー育成では、試験結果を単なる合格・不合格の線引きではなく、点数ごとの分布に注目して分析が可能です。 どう伝えれば安心する? また、上司に資料を提出する際には、以下の行動を心がけていきたいと思います。まずアウトプットのイメージを具体化し、それに必要な情報を集めます。そして、仮説を立ててそれを検証できる視点で分析し、提案先の社員目線にあったアウトプットを整えます。

クリティカルシンキング入門

データ分類で在庫管理を効率化する方法

実践で見えた真実は? 学んだこととして、まずは実際に手を動かし、様々な切り口でデータを分類してみることの重要性がありました。その際、5W1Hといった手法を活用しつつ、単純に機械的に分けるのではなく、どのように分ければ意味が出てくるかを考え、仮説を立てることが大切だと理解しました。仮説を立てることで傾向を捉えることができますが、その傾向だけにとらわれず、他に絶対的な傾向はないのかをさらに異なる視点から分析することも重要です。 在庫管理に活かす? 自分の業務では、販売会社の在庫や売上の管理にこのアプローチが役立つと感じました。具体的には、在庫が増える要因や売上が変動する要因の分析に応用できると考えています。例えば、在庫削減の計画を検討する場合、在庫増加の原因を詳細に分析することが、具体的な対策につながると考えています。 売上計画はどうなる? 私が担当している地域では、計画通りに販売が進まないことで在庫が増えているという現状の課題があります。その打開策を考えるために、どの商品がどの顧客先で計画と実績に差が出ているのかを分析し、問題を特定したいと思っています。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

クリティカルシンキング入門

経営課題解決の鍵:イシュー設定と軌道修正の実践

クリティカルシンキングの再認識 今回の事例は、結果を知っているからこそイシューを絞り込むことができたと言えます。しかし、未来が見通せない中ではイシュー設定や課題抽出、意思決定力が一層難しくなります。この点で、クリティカルシンキングを再度学ぶ価値を実感しました。 イシュー設定の難しさをどう克服する? イシュー設定自体も難しいですが、仮にイシューを設定して思考を進める過程でズレが生じた場合は、軌道修正が必要であることに気づきました。私は、この事例を通じて得た学びを、自社の経営課題である「5年以内に収益性を2倍にする」という目標に当てはめることができると思いました。特に、問題課題に対する審議を進めていく中で、イシューからのズレが発生し、迷子になる場面で役立つと感じました。 イシューツリーで見える新たな視点 自社の経営課題をイシュー化し、イシューツリーを作成する過程では、これまで見落としていた視点や、分析が不十分なデータを発見することができます。また、問題解決の場面では必ずイシューを明文化し、審議するメンバーがいつでも確認できるようにしておくことが重要です。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

戦略思考入門

プロジェクト成功へ向けた分析の旅

新プロジェクトに必要な分析手法は? 新しいプロジェクトの構築段階において、既存事業の来期戦略策定のために3C分析とSWOT分析を実施しようと考えています。プロジェクト開始当初に会話はしましたが、現段階で再度分析を行うことで、本格的な稼働に向けた準備を行いたいと考えています。 活用すべき戦略策定のステップは? また、既存事業の来期戦略については、SWOT分析を通じて外部環境の把握と自社サービスの内部環境の見直しを進めていきます。担当として、過去の定量データの調査が必要なため、分析のための情報収集を開始する予定です。 意思決定をどう高める? 具体的な行動計画としては以下の2点を挙げます: 1. 現在私が直面しているような時期や、来期の事業戦略を考えたりプロジェクト方針立案の際に、これまで学んできた分析手法を活用し、関与するメンバーの方向性を統一する。 2. 単に分析手法を行うだけでなく、「経営者の視座で考える」「ジレンマを過度に恐れない」「他社の意見をしっかり聞く」といった意識すべき事項を忘れずに持ち続けることで、効果的な意思決定を行っていきたい。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

クリティカルシンキング入門

データで切り開く健康革命!

問いはどう整理する? この事象を考える際、まず問いを明確にすることが重要です。その問いを常に意識し、流されずに立ち止まる姿勢が必要です。また、その問いについて組織全体で方向性を共有し、具体的な理由や方法を知りたいと思わせるような資料を作成することで、モチベーションの向上につなげていきましょう。 健診データはどう活用? 健診結果や保健指導で得られたデータを活用し、健康意識の向上にどのように寄与できるかを考え、健康教育を企画することが求められます。このデータを駆使して特定保健指導対象者の減少を目指しましょう。さらに、健康意識を自立化させるための最初のステップを見極め、知識を提供することが重要です。 健康教育はどう進展? 半年以内にデータをまとめて分析し、1年以内に健康教育を実現することを目指します。特定保健指導では、自社のデータや傾向を示すことで、メタボリックシンドロームの解消に貢献したいと考えています。健康意識の自立化にはさまざまな手法を用いた仕組みづくりが必要であり、そのためには業務分担を明確にし、中長期的な視点で実践していくことが求められます。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right