クリティカルシンキング入門

問題の本質を探る思考の鍛錬

本当の課題は何? 顕在化している問題をそのままイシューとして設定するのではなく、なぜそれらが生じているのか、本当の問題は何かを分析することが重要だと感じました。なぜなら、顕在化した問題に対して対症療法的なアクションを取っても、根本的な解決にはならないことが多いからです。しかし、本質的な課題を見つけるのは今の私にとって非常に困難であるため、思考を鍛える練習が必要とも感じています。 仕事のバランスはどう? デイリー業務と企画業務のバランスを考える際や、残業時間削減に向けた対策の検討など、さまざまな場面でこのアプローチは役に立つと思います。顕在化した問題に隠れている潜在的な問題を深く分析し、正しい対策を探っていきたいです。 事実の関連はどう見る? 見えている情報だけでイシューを設定するのではなく、なぜその事象が発生しているのかを考えるようにします。また、1つの事実から安易に結論を出すのではなく、複数の事実を関連づけ、問題の本質を考える癖をつけたいと思っています。情報を分析する際は、データを加工し、複数の視点からの検討を行うことも重要です。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

データ・アナリティクス入門

仮説で開く未来への扉

仮説の意義は何? 普段は無意識に仮説を活用していましたが、今回改めて仮説について深く考える機会となりました。問題点に対してフレームワークを用いて仮説を立てることで、対応が迅速になるという認識はこれまであまり持っていなかったため、今後はより丁寧に仮説を構築し、その正しさを確認しながら業務に取り組んでいきたいと考えています。 仮説の落とし穴は? 実際に仮説を立てる際、つい思い込みに基づいた仮説になってしまうことが印象に残りました。そのため、クリティカルシンキングを意識し、より網羅的に状況を確認するよう努めます。また、困りごとが発生した場合、ユーザーが直面している問題をフレームワークを活用して洗い出すことも重要だと感じています。特に4Cの視点はこれからも大切にしていきたいです。 施策はどう進める? 新しい施策を検討する際には、4Cを活用して仮説を構築し、その仮説に基づいて必要なデータを収集し、提案へと繋げていくつもりです。データを集める際は、自分のバイアスに左右されず、幅広い視点で情報を整理するよう心がけたいと思います。

データ・アナリティクス入門

論理の力で切り拓く学びの軌跡

何を明らかに? まずは、最初のステップとして「何を明らかにしたいか」を再認識しました。what‐where‐why‐howの視点で、どの問題にどう向き合うかを意識する必要があると感じました。 ロジックの使い方は? また、whereを検討する際、単に箇条書きで列挙するのではなく、ロジックツリーなどを活用することで、漏れなく観点を広げられることが重要だと認識しました。 実践はどう進める? すぐに実践できるイメージはまだ固まっていませんが、まずは身近な問題を洗い出し、関連するデータを収集しながら、常に何を知りたいのかを考えていこうと思います。実務への落とし込みはまだ模索段階ですが、具体的な数字を使いながら学んだ内容を繰り返し適用することで、定着を図りたいと考えています。 業務整理はどうする? 改めて、自身の業務における問題点や知りたい情報を明確にするため、業務内容の整理が必要だと感じました。また、仮説を設定する際には、フレームワークだけでなく思考プロセスも磨く必要があると実感し、積極的にスキルを向上させていこうと思います。

データ・アナリティクス入門

全体像に迫る!データ活用の新視点

全体像を掴めた? 今週は、これまで学んできた内容の総括を行い、全体像を整理することができました。特に、さまざまなフレームワークを学ぶ中で、データ分析への応用という視点が十分に考慮されていなかったと感じ、その応用方法を学べたことは大きな成果となりました。 解決プロセスは? 問題解決のステップや、各ステップにおけるプロセスの分解など、これらのフレームワークがMECEの実践には欠かせない要素であることを実感しました。今後は、これらの点を念頭に置いて取り組んでいきたいと考えています。また、仮説設定については、あくまで切り口として捉え、仮説の実証に固執しない姿勢を大切にしていく所存です。 データ活用はどう? さらに、日常的に触れるデータを活用し、各フレームワークを自分の中に定着させるためには、意識的な実践の場が必要であると感じました。そのため、普段の業務はもとより、オープンデータを活用して実践できる環境づくりに取り組むつもりです。具体的には、新たな講座への受講や社内での勉強会の企画などを通じて、さらなるスキルの向上を目指します。

クリティカルシンキング入門

分析の新視点でスキルを磨く挑戦

データ分析への新たな視点は? 私は日々の業務でデータを分析する機会がありますが、今まで同じ手法で行ってきたことに気づかされ、反省しました。データ分析においては多様な視点で考えることが重要であり、仮説を立てつつデータを加工・分解し、結果が異なる場合には新たな仮説を構築して異なる視点から再チャレンジする。そうしたトライアンドエラーを繰り返し、データ分析のスキルを磨きたいと思います。 データ理解を深める挑戦 普段の業務で目にするデータも、ただ眺めて終わりにせず、自分で加工して理解や洞察を深めることに挑戦したいです。また、具体的なデータ分析業務に携わる機会を活かし、仮説立てとデータ加工のサイクルを繰り返し、分析スキルや仮説構築の感度を高めたいと考えています。 ニュースデータでのスキル向上 仕事だけでなく、ニュースや新聞で出会うデータにも自分なりに加工する挑戦をしてみたいと思います。ニュースに掲載されるデータの前提や、割合を示している場合の分母と分子の関係についても、MECEの視点で注意深く検討する癖をつけていきたいと考えています。

データ・アナリティクス入門

データ分析を変える前に目的確認の力

データ分析の目的すり合わせとは? 講義内のグループワークでは、上司と部下の間でデータ分析の目的をしっかりとすり合わせる重要性についての議論が特に印象的でした。コミュニケーションが一方通行になっていないか、それぞれの思い込みをそのままにしていないか、データ分析に入る前に行うべきことがあると再認識しました。 目的の共有で生まれた変化は? そこで、「データ分析前の目的のすり合わせ」を意識し、今週の業務に取り入れてみました。業務内容としてはデータの取り扱いが簡単なものであっても、その目的を明確に部下に説明すると、彼らの表情が明るくなり、納得感が増したように思います。 データの共有は次にどう活かす? 日々の業務は多種多様なデータの取り扱いの連続です。目的やデータの見方について、社内で共通の認識が確立している場合もあれば、単にデータをまとめて共有するだけで次のアクションにつながらない場合もあることに気づきました。今後は社内でグラウンドデザインの共有を進め、各種データの目的やKPIとしての活用方法について議論を深めていきたいと思います。

データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

クリティカルシンキング入門

データで見えた「新たな発見」の重要性

視覚的資料の効果的な使い方とは? 図や表などの視覚的資料を用いることで、内容の理解が促進されることを実感しました。データを分ける際には、最初に大きく分類し、後で細かく分けることで、必要に応じて簡単に異なる切り口に変えられることを学びました。切り口を考える際、自分なりの解釈を持たずに分けることが重要だと感じました。 正確な業務報告のために何を意識する? 業務結果を報告する際、実際の数字やグラフを交えた説明は理解されやすいと感じました。一方で、結論を先に決めてからデータを用意する場合、違うデータが出たときに戸惑うことが多かったです。偏見なくデータを見ることで、新しい結論や発想に至る可能性が広がると感じました。 偏見を排除してデータを分析するには? 偏見なくデータを収集し、そこから得た結論を説明する際、もれなくダブりなく分析することで、より詳細な結論や議論の種となる事項を挙げられるようにしたいです。また、自分や他者が提出したデータを見る際には、もれなくダブりなくなっているか、恣意的なデータになっていないかを意識したいと思います。

クリティカルシンキング入門

クリティカルシンキングで業務課題を解決する方法

繰り返し学ぶ重要性は? 本質的な問いの立て方を意識し続けることが重要です。ビジネススキルは繰り返して学習しないと身につきません。そのため、過去の学びを何度も反復し、確実に身につける必要があります。特にクリティカルシンキングは、あらゆるビジネススキルの基礎であり、重要な要素です。 クリティカルシンキングの活用法とは? 例えば、製造などで連続生産する際には、クリティカルシンキングを用いて課題を抽出します。そして、その課題に対して、3つの視点を用いながら解決方法をクリティカルシンキングで考えます。解決方法は、人々が求める視点で提示し、イシューを設定して筋道の立った考え方を構築し、軸がぶれないようにします。 効果的なデータ表現の工夫は? また、まとめたデータなどを図表で表現し、分かりやすくする工夫も必要です。課題を説明する際には、ポイント順に整理しながら説明することが大切です。相手がどのような情報を求めているかを考えながら整理し、まとめた情報を文章で表現することで、何が言いたいのかを自分自身で明確にすることが求められます。

クリティカルシンキング入門

心に響くシンプル伝達法

提案資料はどう伝える? 業務推進に必要な提案資料の作成にあたっては、まず提案の目的、もたらすメリット、必要性、関係者への影響などをスライドに分かりやすくまとめることが大切です。資料作成時は、伝えたい内容や数値データに合わせたグラフを選び、例えば時系列データには棒グラフ、変化や推移を示す際には折れ線グラフを使用するなど、見せ方を工夫します。また、各軸には忘れずに単位を入れ、タイトルは内容が一目で分かるように工夫する必要があります。さらに、文字の表現やフォント選び、下線、太字、色などを活かしながら、情報が具体的に伝わるスライド作りを意識しています。 メールで本当に伝わる? 今回の講義を通じて、メールなどのコミュニケーションでも注意が必要だと実感しました。自分が発信するメールが必ずしも相手にしっかりと伝わっていない可能性があるため、タイトルやリード文、本文の構成をシンプルかつ要点が伝わるように工夫することが求められます。短い文章で必要な情報を明瞭に伝えることを意識し、読み手に負担をかけないコミュニケーションを心がけたいと考えています。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right