戦略思考入門

ハイエンド顧客を狙った眼科マーケット攻略戦略

顧客分析の重要性を再認識 マクロの視点で顧客を分析することの重要性を改めて学びました。優先順位を定量化することで、新たな注力分野が見えてくることを実感しました。日々の業務や顧客対応に追われがちですが、冷静に分析することで無駄な動きを減らせるかもしれないと考えました。 質重視の顧客ターゲティング 眼科クリニックの開業マーケットでは、総合メーカーのパッケージ提案によるディスカウント競争が激しいです。ただし、提供される顕微鏡の質は必ずしも高くないため、質を重視しない顧客はターゲットから外し、こだわりのある顧客に絞ってアプローチすることが効果的だと考えます。 大学病院戦略の必要性は? そのための提案根拠を定量化するために、外部および内部のデータを収集します。特にハイエンド市場を目指すには、業界で影響力のある大学病院戦略が重要です。大学病院の手術数や関連病院の数などの評価を定量的に行い、優先順位をつけてアクションプランを策定します。

クリティカルシンキング入門

チームの課題発見と解決の秘訣

何を考えるべき? 考えを始める前に、何を考えるべきか、またどんな問い(イシュー)に答えを出すべきかを明確にすることが重要です。問いを具体化し、打ち合わせ中は常にその問いを意識することで、間違った答えや見当違いな答えを避けられます。 進捗はどう把握? 業務の取り組み状況を把握する際には、進んでいるチームと進んでいないチームを比較する必要がありますが、これは単に取り組み状況を定量的に確認するだけでなく、定性的にも捉えることが求められます。特に、取り組みが進まない理由を探る際には、店舗の大きさ、年齢、入社時期など、さまざまな角度から深く分析することが肝要です。 次年度方針はどう? 現在、次年度の方針を策定中ですが、この策定には今年度立てた目標に対する達成状況が影響します。目標の再設定や目標達成のための研修、会議の内容など、過不足を様々な角度からデータを分析し、1年後には自身の成長が実感できるような方針を策定したいと考えています。

データ・アナリティクス入門

重みを知れば仕事が変わる

各平均値はどう選ぶ? 加重平均は以前から活用していましたが、その際は重み付けの解釈に重点を置いていました。改めて考えると、単純平均、加重平均、幾何平均、中央値といった各種の平均値は目的に応じて使い分けるべきですが、実際の業務では加重平均に偏りがちです。また、見える化の手法としても円グラフやヒストグラムが多用され、ばらつきは主に標準偏差の数値で把握しています。 業務量の重みをどう見る? 業務量の重み付けについては、データから抽出することで一層理解が深まり、数値化により説得力のある説明へとつながると感じています。今後も業務要件を数値から読み解く手法を積極的に採用していきたいです。 数値が語る本質は? さらに、業務量のヒアリング調査結果やシステム利用率など、数値のインパクトは重要な判断材料となります。これらを自分の業務タスクに組み込み、インプットデータのマネジメントを計画の初期段階から取り入れていくことが今後の課題だと考えています。

データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

データ・アナリティクス入門

グラフでひもとく学びの秘密

ビジュアル化はどう極める? データ分析において、ビジュアル化は非常に大きな価値を持つと実感しました。正しいビジュアル化を実現するためには、データの加工や適切なグラフの選定が鍵となります。特に、円グラフとヒストグラフのどちらを用いるかで迷うことが多いため、今後は意識を高めて判断していきたいと考えています。 提案資料の魅力は? 現時点では業務上頻繁に活用する機会はないかもしれませんが、将来的に提案資料を作成する際、ビジュアル化にこだわった資料作成を心がけることで、提案内容の有用性を直感的に伝えることができると感じています。 グラフ加工はどう学ぶ? また、今回の履修ではヒストグラフや円グラフなど、さまざまなグラフの種類を学び、大量のデータをどのように加工していくかについても学習しました。さらに、ビジュアル化した情報の伝え方についても工夫する必要性を再認識し、どの方向性で判断いただきたいかを明確にすることが重要であると理解しました。

データ・アナリティクス入門

フレームワークで学びを変える

フレームワークの意義は? 仮説の基本的な理解を改めて振り返ることができました。これまで、どちらかというと自分のバイアスに左右されることが多かったですが、3Cや4Pといったフレームワークに沿って物事を進める習慣が必要だと実感しました。もちろん、データの活用において都合の良い点に気付いてしまう傾向もあり、そこは今後の課題です。 チーム作業に注意すべき? また、実際の業務においては、ある程度の人数で構成されるチームで作業を進める場合、フレームワークを用いる際に工夫が求められることを改めて認識しました。それでも、基本に則って作業を進めることが、合意形成を図る上で重要であると感じました。 合意形成、どう進める? 変革やシステムの刷新・改善といった業務では、関連部門との合意形成が不可欠です。こうした基本的なプロセスをフレームワークに落とし込むことで、問題の根本をより深く理解し、具体的なアクションプランを立てることができると考えています。

クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

データ・アナリティクス入門

ABテストで広がる検討の可能性

ABテストの活用法は? 原因を探るツールとしてご紹介いただいたABテストについて、既に知識はあったものの、問題解決プロセスにおける位置づけと合わせて理解できたことで、具体的な利用シーンがイメージしやすくなりました。体系的に整理することは、自身で活用する際や他者に説明する際にも有効だと感じています。 業務検討テンプレートは? 業務に取り入れるためには、具体的な状況を想定し、各パターンごとに検討方法のテンプレートを構築しておく必要があると実感しました。こうしたテンプレートを整備することで、検討に着手するスピードが速まり、業務の効率化にもつながると考えています。 どの要素が影響する? たとえば、よくあるデータ分析の依頼を想定し、受注額に影響を与える要素を洗い出して、その関連性を検証するパターンをいくつか作成しようと思います。これにより、関係性の強い要素から受注額を予測する、といった検討がよりスムーズに進むと期待しています。

クリティカルシンキング入門

データ分析の新しい視点で業務改善へ

グラフを活用したデータ分析の重要性 分析においては、数字だけを見ずにグラフにするなど、視点を変えることが重要です。絶対値だけでなく比率などの相対値も分析し、複数の区切り方や切り口でデータを分解したうえで、それらを複合させて検討する必要があります。これらを怠ると、正しい課題や仮説にたどり着かない可能性が高くなります。 新たな視点の必要性とは? 私は、自身の業務において組織や顧客のデータから傾向や課題を分析する際に、複数の区切り方や切り口を見直していないことがあると感じています。そのため、これまでの区切り方や切り口以外に、何か新しい視点がないかを改めて考えてみたいと思います。 定例会議での効果的な課題分析法 現在、月に一度の定例会議で自社と取引先企業との間で課題の分析と対応策を議論しています。分析は自社で行うため、データの区切り方や切り口、グラフの見せ方を再検討し、仮説を誤らないように資料全体を見直すことが必要です。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

データ・アナリティクス入門

現状把握で切り拓く自分の未来

考えの整理はどう? 総括すると、各工程ごとに自分の考えを丁寧に整理することの重要性を改めて感じました。「いつ」「どの業務が」「なぜ」「どのように」といった観点で整理し、その上で仮説を立て検証することで、具体的な解決策を導き出せると理解しています。 現状把握は何が鍵? まずは、現状を正確に把握することが不可欠です。具体的には、5W1Hの観点から現状を整理し、各工程を定量的に明示することが求められます。また、数字だけでなく現場へのヒアリングを通じ、データと実態に大きなズレがないかを確認していくことが重要です。 仮説検証はどう進む? 重ねて申し上げますが、現状把握を基に仮説を立て、検証するプロセスが鍵となります。仮説を検討する際には、現場担当者の感覚も反映させることで大きなズレが生じないよう確認し、データ整理は目的化せず、解決策検討のための具体的なアプローチとして行動に移す意識を大切にしたいと考えています。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right