データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

クリティカルシンキング入門

多視点で発見!学びの可能性

新たな視点の重要性は? 一度一見納得のいく答えにたどり着いた後でも、その答えが本当に正しいのかを疑う視点を持つことが重要だと思います。ほかの視点から再度考えることで、これまで気づかなかった事実に気付く可能性が高まります。また、要素を分解する際には、MECEの考え方に基づいてデータを重複なく漏れなく整理することが大切だと感じました。 どうすればリソース確保できる? また、サーバ保守業務に従事している私にとって、ユーザから届くリクエストの分析は日常的な作業です。一定時間ごとのリクエスト数を見ることで、日中と夜間で訪問者数の違いを把握でき、サーバの応答時間の計測を通じてシステムへの負荷状況を確認することが可能です。リクエストのトレンド分析により、将来的に必要となるサーバ台数の予測が行え、適切なリソース確保につながります。また、応答速度の追跡を通じて、サーバが限界を超えるリスクを事前に察知し、システムダウンを防止するための対応策を講じることができると感じました。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

データ・アナリティクス入門

データ分析で見えた学びの本質とは?

データ分析の目的は何か? これまでの学習を振り返り、データ分析において目的が重要であることを再認識しました。自分がどうありたいのか、そのためになぜデータ分析を学ぶのかをしっかりと言葉にすることが大切だと感じました。振り返りの中で、学習した内容を理解したつもりでも、言葉にできなかったり、理解が定着していないことがあると気付きました。 学んだことを実務にどう活かす? 講座全体を通じて学んだデータ分析のプロセスを、実際のお客さまアンケートや業務指標の分析に活用しています。サービス品質向上のために、問題点や原因を見つけ、それに対してどう対策するのかを具体的に見出していきます。 データ分析の具体的な手順は? まずは9月末までに、上半期の各種データの大きな傾向を洗い出し、仮説構築まで行います。その後、10月に入ったら上半期全体のデータを当てはめ、より詳細な分析を進めます。データのビジュアル化も必要なため、Tableauに新たなダッシュボードを作成します。

戦略思考入門

競合を超える!戦略と分析の新発見

ターゲットと競合の意義は? 差別化戦略を考える上で、改めて「ターゲット顧客」と「顧客視点の競合」の重要性を認識しました。競合にばかり目を向けると、自社の本質を見失うことがあります。そこで、VRIO分析などのフレームワークを活用し、戦略立案や競合の把握に役立てることが重要です。 戦略実行の鍵は何? 経営層が策定した戦略を実行する場面が多くありますが、今学んだフレームワークを活用することで、戦略への理解を深めることができます。また、自分が収集したデータを効果的に活用し、それを他のメンバーに共有することで、組織全体を正しい方向に導く努力をしています。 業務で差をつける方法は? 具体的には、自分が担当する業務内で顧客と競合を見直し、現在の設定と比較して違いを見つけ出します。市場の変化を感じるだけでなく、フレームワークを用いて言語化し、その分析結果を組織へフィードバックしていきます。この考え方や動きを他のメンバーにも広げていくことを心掛けています。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

クリティカルシンキング入門

視覚×データで磨く伝達術

視覚要素の威力は? リード文とグラフ、データなどを組み合わせることで、情報伝達力が向上することを再確認しました。視覚的な要素を取り入れることで、受け手が内容を誤解しないようにする効果があると感じています。また、資料作成においては、周囲の環境や相手の置かれた状況、立場といった前提条件を明確にすることが重要です。 報告文の改善方法は? リード文は、社内の業務連絡やチャットで必ず目を通してもらいたい内容として活用されており、幹部向けの予算報告や顧客向けの報告にも有用だと考えています。さらに、これまで文章で行っていた報告内容を、視覚的に分かりやすいグラフやデータに置き換えられないか、検討を進めています。 他者目線を考える? すぐに活用できる場面は少ないものの、日常的にどのようにすれば情報が視覚的に伝わりやすくなるかという感覚を磨くことが大切です。また、作業報告においても、相手目線で内容がどう映るかを意識し、迅速に対応できるように努めています。

クリティカルシンキング入門

効率アップの秘訣!データの切り口と見直し術

データの見せ方を工夫するには? データには見せ方があります。見えている数字だけでなく、切り口を変えることで新たな視点が見えてくることもあります。切り口を多く持つことが重要です。MECE(Mutually Exclusive, Collectively Exhaustive)を意識することで、モレやダブリを防ぎ、精度の高い分解を行うことができます。 業務フローの見直し方法とは? 新たな業務を請け負う際や業務フローを起こす際には、現在のやり方をMECEに当てはめ、モレがないか確認します。また、プレゼン資料を作成する際には、データの見せ方を切り口を変えて分解することで、納得感のある資料を作成することができます。 資料作成のコツを知ってる? 一度作成した業務フローは3回見直しを行い、モレがないか確認します。その際、時間を変更してみることも有効です。資料を作成する際には、切り口を3つ以上変え、毎回グラフにして見えていないものがないか確認を行います。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

データ・アナリティクス入門

偏見を超えるデータの力

バイアスはどう捉える? データ分析を学ぶ中で、ただ数値を扱うのではなく、自己のバイアスを取り払い、タスクに合わせてニュートラルな視点に切り替える大切さを実感しました。このような状態で、高い専門性と比較するスキルを活かし、データから具体的な仮説を立証できると理解しています。 セキュリティは大丈夫? 社内で広くデータ分析を利活用するためには、堅牢なセキュリティ基盤とデータ基盤の構築が不可欠だと感じます。編集機能やデータ閲覧機能を適切に制御しながら、データウェアハウスを運用することで、業務に活かすための取組みが一層進むと考えています。 AI応用はどう進む? さらに、データアナリティクスを深く理解するために、4月から9月までの期間を通じて学習を進めるとともに、生成AIを取り入れたデータ分析への応用も視野に入れています。データウェアハウスから得られる結果や知見を、プログラムを通じて読み解くスキルの習得が、今後の発展に大いに寄与すると感じています。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right