データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

クリティカルシンキング入門

データ分析の「視点革命」で成果を創る

データ加工で解像度は上がる? データを加工・分解することで、その解像度を向上させることができると再認識した演習でした。データに対して複数の切り口を持つことや、1行追加や率を出すといったひと手間も重要であることを実感しました。動画学習では「分解して何も見えなくても失敗ではない」という考え方を学びました。業務の中で、切り口が間違っていると感じることも多々ありましたが、新しい切り口の必要性に気づくこと自体が価値のあることであると理解できました。 本当に慣れているの? 私は経営企画を担当しており、数値分析には慣れているつもりでした。しかしながら、切り口や観点の不足、そして思考の偏りがあると感じることが少なくありませんでした。「慣れている」ということが、思考の停止を生んでいた可能性もあると気づかされました。 業務にどう反映する? 今回の演習で学んだデータ分析の基本的な考え方を、業務に活かしていきたいと思います。特に、社内の業績報告において、単に数値を報告するのではなく、その数値から得られる洞察を分析し、資料として提供していきます。幸い、私の立場は経営層や全社員に情報を発信できるものであり、報告の機会も多いため、この学びをすぐに実践に移すことが可能です。 レポートで何が伝わる? データ分析の結果を報告するための資料作成が、ただの作業とならないように、受け取る側の視点を考慮し、より良い情報発信ができるよう努めていきます。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

クリティカルシンキング入門

コミュニケーション術で説得力アップ!

説明は本当に伝わる? 相手に説明する際に、伝わっていないと感じることが多くありました。これまで、その理由について深く考えることはありませんでしたが、今回の講義を通じて様々な要因に気づきました。例えば、論理の飛躍や理由が適切でないことなどが挙げられます。今後は、ピラミッドストラクチャーやロジックツリーを活用し、相手の立場で必要な要素が抜け漏れていないかを確認した上で、論を立てていきたいと思います。 上司は何を求める? 企画承認会で上司に承認を得る際には、必要な観点が抜け漏れていないか、ピラミッドストラクチャーを使って確認しようと思います。 話を聞く心得は? また、相手の話を聞く際にも、自分が伝える側だけでなく、意見を求められる機会が多々あります。その際、聞いた話に論理の飛躍がないか、理由が適切か、といった視点を持ちながら意見を受け止めていきたいと考えています。 メール伝達の秘訣は? 情報共有のためにメールをまとめて発信する機会が頻繁にあります。その際には、相手にとって必要な情報が的確に伝わるような文書を作成するよう心掛けます。 年末総括の評価は? さらに、年末に向けた総括資料の作成では、担当する業務領域のプロモーション計画が適切であったか、あるいは効果があったかを総括する必要があります。前回の講義で学んだデータ活用法と、今回学んだ文章のポイントを踏まえ、相手に伝わる表現を洗練させたいと思います。

クリティカルシンキング入門

問いから始める課題解決の秘訣

正しい問いは何? 問いの立て方が変われば考える方向性も変わることを学びました。本質を捉えた問いを立てることが課題解決につながりますが、目先の課題に捉われてしまうと、その問題は解決されないまま繰り返される恐れがあります。正しい問いを立てるためには、データを活用して分解や加工を行い、イシューを特定することが重要です。私は日々、数字や情報を意識的に分解し、イシューを特定できるよう心がけていきたいと思います。 どう集客の課題? 企画営業においてもこのアプローチは常に活用できると感じています。集客に関する企画を立てる際にも、根本的な課題が何かを意識することで、適切な打ち手がより明確になると思っています。たとえば、集客が難しい場合、年齢層や性別などの複数の切り口から情報を収集し、イシューを特定したうえで打ち手を考えることで、より的確な提案が可能になると感じました。 問はどう共有する? イシューを特定するためには、どんな仕事においてもまず「問いは何か」を意識し、その問いを常に意識し続けること、そして組織内で共有することを徹底していきたいと思います。また、業務以外でも問いを立てる習慣を身につけ、イシュー特定に慣れていきたいです。イシューを特定できなければ効果的な打ち手にはつながらず、結果として課題解決にならず生産性も向上しないと感じています。ですから、イシューを特定することを第一の目標として、日々行動していきたいと思います。

クリティカルシンキング入門

イシュー特定で業務効率が劇的に向上

基礎知識の学びと課題発見は? ここまでに基礎知識やデータの読み解き、思考方法を学びました。課題としてイシューを特定するためには、問いから始めることが重要だと認識しましたが、まだ経験から来る判断をしているとも感じました。これを改善するために、常に意識し振り返りを行うことで、習慣化を目指します。 目的とゴールの意識が業務を変える? まず、イシューを特定し、目的とゴールを意識することが重要です。具体的には以下の点で活用範囲があります。 1. **業務の設計** - 目的とゴール、そしてあるべき姿を常に意識します。問いから始めることで、すぐに要点だけに意識を向けるのではなく、全体を俯瞰して考えることが大切です。 2. **人的なミス** - 仕組みや設計に問題がないのか、そもそも対策が必要かなど、広い視野で本質的な原因を考えるようにします。 3. **会議** - 何を決定する会議かを明確にし、イシューが何であるか、本質と内容がずれていないかを意識し続けます。 4. **資料作成** - イシューが何か、無駄な項目がないかを意識し、前提→結論→具体例がぶれていないかを確認しながら作成します。相手にとってのイシューや疑問をくみ取れる内容にすることが求められます。 問いから始めると否定的に捉えられる可能性もありますので、伝え方や日々の信頼残高を貯める意識を持ち続けることが重要です。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

データ・アナリティクス入門

問題解決力を向上させる仮説の立て方

仮説設定の重要性とは? 問題解決プロセスにおける「why」(原因分析・追究)や仮説について学びました。特に重要なポイントは次の2点です。 1. 仮説は複数立てること: - 「Aである」だけでなく、「Bである可能性」や「Aではない可能性」など、さまざまな仮説を立てて決め打ちしないこと。 データをどう活用する? 2. 仮説同士に網羅性を持たせること: - データを評価する際、「何を見れば良いのか」「何と何を比較すれば良いか」「意図をもって何をみるか」といった視点を持つことが重要です。 - 仮説を確定させるためのデータだけでなく、「比較するための」データ収集も忘れてはいけません。 - 関連性のあるデータをより多く集めて分析することで、意思決定の精度が高まります。 進捗管理にどう活かす? この学びは、個人の事案対応力(受付件数と解決件数)や進捗が早い人・遅い人の原因追究(最終的には対策まで)に活用できそうです。日々の進捗管理と並行して、個人の適正業務量や対応方法の評価を行い、現行の運営が正しいかを検証するのに役立ちます。 業務適正の客観評価が必要? 現状を定量分析し、意図的に仮説を持って原因追究を深めることで、より良い業務推進力を発揮させるための手立てを見つけたいと考えています。担当者個人の特性を一旦置いて、より客観的に業務の適正さを評価することが必要だと感じました。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

データ・アナリティクス入門

振り返り文に最適なタイトルは以下の通りです: 「フレームワークで広がる仮説の世界」

--- 仮説構築の新たな視点を得るには? 複数の仮説を持ち、複数の切り口を持つ重要性を改めて実感しました。その仮説を考える際にフレームワークを活用できる点は新たな気づきでした。マーケティング戦略を考える際の4Pフレームワークを使うことで、偏りのない仮説を構築するのに役立つことを実感しました。これにより、今後の仮説構築の幅を広げることができると感じました。 戦略フレームワークを業務でどう活用する? さらに、3C、PEST、5Forcesなどの戦略フレームワークも活用できるのではないかと考えています。実際の業務で各フレームワークを使い、仮説構築を試みるつもりです。 四半期を営業1タームで動かしているため、週次での分析やアクションが求められる環境にあります。分析の機会は多いものの、スピードも重視されます。業務において仮説構築をする際、どのフレームワークが活用できるか、また仮説の質と結論を導く時間軸のバランスを取れるかを実践で試し、見つけていきたいと思います。 全体会議前のデータ分析で何を試みる? 具体的に試みるアクションとしては、毎週月曜日の全体会議前に前週のデータを使って結果および今後の動向分析を行います。その際にフレームワークを利用して複数仮説の構築を試みます。これまでの経験に基づく仮説と、その逆説を並行して作成し、フレームワーク活用時の仮説との差異も合わせて見ていきたいと考えています。 ---

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。
AIコーチング導線バナー

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right