クリティカルシンキング入門

軸を変える!データの新発見

最初のLIVE講座の印象は? クリティカルシンキングの総まとめの週では、最初のLIVE講座で「自分の思考の癖を知る」というテーマが特に印象に残りました。その後のLIVE講座では、week1~5で学んだ知識を活かしながら、2つの問題に取り組み、その中で数字の並びを見ると細部に過度に意識が向いてしまう自分の癖に気づかされました。そこで、まず問題全体を把握し、数値を見える化する、軸を変えて視点を変えるといった手法を段階的に取り入れることの大切さを実感させられました。 数字分析はどう進む? さらに、数字の羅列や傾向を分析する際、現実の業務の中でも工数の見直しやシステムの性能分析などが必要になる状況を思い起こしました。今回学んだデータ分析のツールを活用すれば、初めに考えすぎず、さまざまな角度からデータの整理と視覚化を行い、その上で仮説を立て補足説明を探すという実践的なアプローチが可能だと感じました。 どのデータ視覚化? 今後は、単に収集したデータに基づいて行動するのではなく、まずはデータを多角的に分類し、視覚化する作業を徹底して行います。そして、その中から得られる示唆をたくさん書き出し、グループ化や抽象化を通じて整理し、自分の視点をさらに深める検討を進めていきたいと思います。

クリティカルシンキング入門

データ分解で見つけた次の一手

「分かる」とはどういうこと? 「分かる」とは、分けていくことの手段だという言葉が印象的でした。傾向が見えないことは失敗ではなく、傾向が見えないことが分かるのです。分けることに迷うなら、まず分けてみるという考え方も心に響きました。 データ視覚化の重要性とは? また、データに対してひと手間を加えることや視覚化の重要性についても学びました。以下のポイントが特に役立ちました。 1. 全体を定義する。 2. モレなく、ダブりなく切り分けるために、年齢や時間といった目的に合った切り口に分ける。 3. 分解する切り口には、層別分解、変数分解、プロセス分解の3つがある。 データ選定の再考は必要? さらに、自社をPRする際のデータの選定について考える際、以下の点が参考になりました。例えば、現状のパンフレットには「メディアで取り上げられた回数」を掲載していますが、そのデータがステークホルダーが欲しているデータかどうか、他に適したデータがないかを再検討することも重要です。 パンフレット制作におけるデータ活用法は? パンフレット制作業務においても、現状データの選定理由を整理し、ステークホルダーが関心を持つデータを選定したうえで、様々な切り口でデータを分解することが求められます。

データ・アナリティクス入門

データ分析の基本を理解し深堀り

分析の基本を理解しよう 分析は比較であるという基本を理解することが重要です。目的や仮説をもとに分析に取りかかること、そして問題解決のステップ(What-Where-Why-How)を意識することが求められます。仮説を立てる段階から、何と比較するかを考えながらデータを集め、それを加工・集計し、ビジュアル化することで発見につなげるという手順が大切なのです。 仮説立案の重要性 現在の業務では、多種多様なデータが提示されることが多く、闇雲に分析してしまうことがあります。ここで重要なのは、仮説をしっかり立てて分析に取り組む姿勢を忘れないことです。 データ収集から始めよう 今後の業務では、どのデータを集めるかという段階からスタートします。その際に、学んだことを振り返りながら全体の設計に取り組みたいと考えています。 フレームワークの活用法 今回の講座は自分にとって納得感のあるものでしたが、人に説明や指導するにはまだ至っていません。復習しつつ、意識して普段の業務に当たることで、講座で学んだ内容を自分のものにしていきたいです。特に、フレームワークについては知識としては以前から持っていましたが、きちんと使用したことがなかったため、今後は積極的に活用していきたいと思います。

デザイン思考入門

共感から始めるデザイン思考の魅力

人間中心の考え方とは? WEEK1のライブ授業で特に印象に残った点として、共感から始まる人間中心の考え方がありました。また、「万人受けするものは売れない」という教訓から、常に「誰のために作るのか」を念頭に置くことの重要さを学びました。さらに、相手の気持ちなど目に見えない部分まで含めて考える必要があることが強調されていました。そして、自分の感情を色で表現し、それを伝えることの難しさも実感しました。 デザイン思考に潜む魅力 デザイン思考において、優しさや愛情がその根底にあるのではないかと感じ、より興味が湧いてきました。普段、私はtoCの業務に携わっており、満足度や継続利用率の向上に向けたコミュニケーションを行っています。これまではなるべく全員が満足できるものを提供しようと考えていましたが、今後は誰に届けたいのかを意識していきたいと思います。 3月のイベントに向けた準備 3月のイベント開催に向けては、次のステップを考えています。前回の参加者データを確認し、目的に合ったターゲットの再設定を行います。また、データの整理やその理由付けを行い、社内で相談の上最終決定をします。そして、訴求内容を変更し(サムネイルや文言の調整)、開催後には前回との比較や効果検証を行う予定です。

クリティカルシンキング入門

物事の分解で見える新たな視点

思考の偏りにどう向き合うか? この講座を通じて、物事の分解方法や見せ方の基本を学ぶことができました。その中で、自分の考え方には思考の偏りがあることも改めて認識し、常にそれを前提として振り返ることが重要だと感じました。 データに基づく「イシュー」とは? また、問題解決においては、本当に必要なデータとそれに基づく「イシュー」を抑え続けることが求められると実感しました。チームメンバーが同様に問題解決に取り組む際、その課題を特定し、解決策の立案までの流れを明確に説明できるようになることで、自分自身の理解も深まるように努めました。 業務要件定義の重要性 業務要件定義の際には、業務ユーザーが具体的にどのような問題に直面しているのかを分解し、それを言葉にする重要性を学びました。意識的に、このアプローチを用いることで、意思決定を行う際にどこまで網羅的に分解できているか、その対策が本当に有効であるかを十分に議論する必要性を感じました。 課題分解で認識の齟齬を防ぐ方法 特に、業務ユーザーの課題をシステムで解決する場合、課題の分解を丁寧に行い、認識の齟齬がないよう努めることが不可欠であると痛感しました。これらの学びを通じて、問題解決能力の向上に繋がることを期待しています。

クリティカルシンキング入門

深掘りで磨く伝わる分析術

データ理解はどう変わる? 来場者数や店舗別売上の分析を通じ、データの切り分け方やグラフ作成、説明方法の違いによって、相手の理解度に大きな差が生じる可能性があることを学びました。また、他者が提示した集計データやグラフを直感的に判断するだけでは、誤った認識を抱くリスクがあることにも気づかされました。 実務にどう活かす? 今後は、提示されたデータに対して一歩踏み込んだ検証を行い、分析結果を示す際には相手の理解を意識しながら、より深い考察を加えて伝えていきたいと考えています。実際、グループ店舗の月次や年次実績の集計・分析を担当しているため、今回の学びはすぐに実務に活かすことが可能です。 提示方式はどうする? 店舗別データを分析する際には、結果の提示に留まらず、批判的な視点で多角的に検証し、結果を受け取る側の立場を意識した「伝わる見せ方・伝え方」に努めたいと思います。今日の演習で得た気づきを早速明日からの業務に活かし、月末に実施するグループ店舗の月次実績の集計・分析や回覧資料の作成において、これまでの方法を見直し、データの示し方や分析の切り口を再考する予定です。従来の手法に囚われることなく、より伝わりやすく、意味のある資料作成を目指して取り組んでいきます。

データ・アナリティクス入門

比較で照らす課題と新発見

問題はどこに? 分析においては、比較の重要性を学びました。具体的には、問題箇所をプロセスごとに分解し、その中でどこが課題となっているのかを明確にする方法です。業務内容によっては、顧客数や単価、さらには年齢層や競合の視点なども考慮する必要があります。これまでは感覚的に分析していたため、今後はストーリー性を持たせた見通しの立て方が有効だと感じています。 利用動向はどう? たとえば、コロナ前後でサービス利用が減少しているという現状について、一人当たりの利用量が下がっているだけでなく、利用者全体の数や競合の動向も踏まえて比較検討することで、新たな発見が得られる可能性があります。各要素を分解して分析することで、より明確な課題の特定が進むと考えています。 データはどう整理? そのため、まずは現在あるデータをプロセスごとに整理し、「サービス料」と「サービス利用者数」の比較からアプローチを始めます。仮説としては、サービス料に何らかの課題が存在するはずなので、一人あたりのサービス料、最大値と最小値、中央値といった指標を調査し、問題がどこにあるのかを絞り込んでいきたいと思います。さらに、競合するサービスの状況も合わせて検証することで、より具体的な分析が可能になると考えています。

クリティカルシンキング入門

仮説から紐解く学びのヒント

どの切り口で捉える? ある事象のデータを分解する際、まずは仮説を立て、切り口を明確に設定して可視化することで、精緻な結果を導き出すことができると感じました。 本当の答えは? また、目の前にある「いかにも」正しそうな答えに安易に飛びつくのではなく、一旦冷静になり、本当にその答えで問題ないのか疑問を投げかけ、深掘りする姿勢が大切だと実感しています。 どう分解すべき? さらに、データを漏れなくダブりなく分解することが、本質にたどり着くために重要であり、この考え方は日常業務にも大いに活用できると考えます。 グラフは説得力? 具体的には、新商品企画の提案などで顧客データを分析する際、この手法が大いに役立つと感じています。視覚化されたグラフは、商品提案の信頼性を伝える上でも非常に有効です。 数字で伝える? また、数字を用いた説明を普段の業務に取り入れることで、他部門とのコミュニケーションがスムーズになり、その必要性をより明確に伝えることができると考えています。 発想はどう磨く? 最後に、仮説の立て方や切り口の持ち方は状況に応じて変化する部分もあり、どのような発想が最も効果的なのか、その上手なやり方についてもぜひ意見を聞いてみたいと思いました。

データ・アナリティクス入門

ふと気づく実務に溶ける学び

学びはどう活かす? 実務において、学んだことが実際に活かせるかどうかの判断が難しいと感じました。振り返ると、無意識のうちに今回の学びを業務に取り入れていた事実に気づき、今後同様の状況ではあえて意識的に活用する方法を考えたいと思います。 データパターンは? シミュレーションの提示業務では、どのデータパターンを示すべきか検討しました。複数パターンを提示する意義を考えた結果、最もネガティブなケースのみを示すことで目的が達成できると判断し、ロジックツリーを用いて場合分けを行いました。 商品属性の分析は? また、実務では購入しているパネルデータを用いて、自社商品の属性(主原料やサイズなど)に基づく分析を実施しています。ある部署から、異なる軸を同列に分類して分析してほしいという要望があり、戸惑いを覚えたことがありました。しかし、互いの議論を重ね、重複する項目についてどちらに寄せるかの基準を設定した結果、目的にかなった提案へとつなげることができました。今後は、視覚的な説明を取り入れることで、より迅速に合意形成が図れるようにしたいと考えています。 MECEのポイントは? 最後に、MECEを設定する際のポイントや具体的な事例についても、ぜひご教示いただきたいです。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right