アカウンティング入門

売上原価に潜む成長の秘密

売上原価の違いは何でしょうか? 企業分析を行う際、販管費と比べて業界やビジネスモデルによって売上原価の構成が大きく異なる点に着目することが非常に大切です。売上原価は売上獲得に直接関係するコストであり、各企業が採用する価値創造プロセスの違いによって、その内容が大きく変わってきます。学習中には、とある大手企業の事例からこの点の重要性を改めて実感しました。 事業分析の視点はどこでしょうか? まず、自社事業別のPLやBSの分析と、各競合企業の分析が必要であると感じました。当社はビジネスモデルの異なる複数事業の複合体であるため、各事業の価値創造プロセスの違いを意識した分析が求められます。この考え方で競合企業を調査していくことにも意義を見出しています。 利益上昇の理由は何でしょうか? また、売上総利益が前年比で大幅に上昇しているため、その要因を特定する必要があります。ここで注目すべきは売上原価です。原価は売上に直結する支出であるため、まずは売上構成の詳細やその推移を把握し、その上で原価の中身を詳しく調査することが基本になると考えています。 情報整理はどう進めるのでしょう? さらに、必要な社内データが複数のシステムで管理されている現状では、情報の整理が不可欠です。すぐに必要な情報にアクセスできるシステム環境が整えば、より迅速かつ正確な分析が可能となり、大いに業務改善につながると期待しています。

データ・アナリティクス入門

実践で納得!A/Bテストの極意

A/Bテストって何? A/Bテストの実施方法がとても参考になりました。まず、目的を明確に設定した上で、テスト期間や条件をできるだけ統一し、一つの要素に絞ってテストを行う重要性を学びました。これまであまり理解していなかった点を、具体的な説明を受けながらしっかりと納得することができました。 仮説の検証はどう? また、仮説を立ててテストを行い、その検証を実施した後、もし仮説が間違っている場合はなぜそうなったのかを考察することの必要性にも気づかされました。これらの学びは、今後の業務にぜひ活かしていきたいと考えています。 広告効果はどこで? 弊社ではクリスマスシーズンによくWeb広告を実施していますが、その際にA/Bテストを行うことで、広告の成果を向上させることができるのではないかと思います。特に、効果的な文言を選定する点では、コストも低く簡単に実施できるため、今年のクリスマスキャンペーンで取り入れてみたいと考えています。 チームでどう動く? 具体的には、まずチーム内でA/Bテストの概要を共有し、昨年度の広告で使用したビジュアルや文言を振り返りました。その上で、今年のキャンペーンでは複数のパターンのデザインや文言を用意することを提案する予定です。また、正確なデータを得るために、どのくらいの規模のオーディエンスに対してテストを行えばよいかについても、さらに調べて学びたいと思います。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

クリティカルシンキング入門

視点・視座・視野を活かして自己成長

問いの重要性とは? 今回の講座を通して学んだことは、「問いの重要性」である。問いを通じて的確なイシューを設定すること、そのためには3つの視を意識して物事をとらえることが重要だ。イシューに対する解決方法を見つけるために、様々な切り口からデータを分解する。そして、それを他者に伝えるために文章の書き方や視覚化を意識し、資料化する必要がある。 同僚に伝えたい大切なこと 私が同僚や友人に伝えたいことは以下の3点である。第一に、3つの視(視点、視座、視野)を持つこと。第二に、自分の思考にはクセがあることを自覚すること。第三に、問いの重要性(問いから始める、問いを残す、問いを共有する)を理解することだ。 判断する際の意識 これからは、今まで以上に「判断」や「かじ取り」をしなければいけない場面が増えてくるので、今回の講座で学んだことを活かすことができると考えている。具体的な場面を想定すると、他部署から移管される業務を受けるかどうか判断を求められる場面において、自部署や自身の視点や視野で判断するのではなく、3つの「視」を意識して判断を行うことが見込まれる。 経験だけに頼らない判断 経験だけで判断するのではなく、3つの「視」を意識して問う。そして、その問いをチームに共有する。そして、適切なイシューを明確にしてから判断・実行を行う。イシュー設定後は、都度問いに立ち返ることを忘れずに物事を進めていく。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

データ・アナリティクス入門

全体を捉える問題解決のヒント

プロセスはどう見る? 問題解決のプロセスは曖昧な実施ではなく、明確に意識しながら進めていく必要があると感じています。ありたい姿と現状のギャップを把握し、単に発生した問題のみを解決するのではなく、全体を俯瞰して問題を特定することが重要だと思います。 何が問題の核心? 【What】:まず、ありたい姿と現状のギャップを正確に捉えること。加えて、全体の中から問題を特定し、対処療法に終始しないよう意識することが求められます。 【Why】:再発防止を見据えた要因分析が十分に行われ、単に問題の裏返しになった解決策に留まっていないかを確認することが肝心です。 【How】:グループメンバー全員がこのプロセスを意識し、行動に移せるかどうかも大切なポイントです。 会議の進めはどう? また、社内会議で問題の共有を行う際には、現在どのプロセスのステータスにあるのかを明確に意識し、視覚化した議論ができるようファシリテーションを心がけたいと考えています。オンライン会議など参加者の理解度が不明な状況では、イメージしやすい議論の進め方が一層重要になります。 データ活用の秘訣は? さらに、定量分析の書籍を通じて学んだ知識を復習し、データ分析における具体的な分析式などの例を自分の引き出しに加えたいと思います。その知識を業務資料に活用することで、社内のデータアナリティクス推進にも貢献したいと考えています。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

クリティカルシンキング入門

グラフ活用で説得力向上!

グラフはどう選ぶ? 見る人に伝えたい内容に応じて、適切なグラフを採用することが重要であると感じました。それぞれのグラフの利点を把握し、状況に応じた選択ができるようになりたいと思います。また、よく使用されるパターンを覚えておくことで、業務で迅速に判断できるようにしたいです。 文章の伝え方は? 文章での伝達については、文章自体の内容に加えて、色や書体、図などの表現方法が伝わり方に影響を与えることを学びました。伝えたい内容に適した表現方法を選ぶことが重要です。実際に読んで、それぞれが伝えたいメッセージに合致しているかどうかも確認を続けていきたいです。 スライド制作の秘訣は? スライド作成時には、「文字や図表、グラフの配置」「メッセージの内容」「図表やグラフの表現方法」に関する工夫が大切です。これらのポイントについても学びました。 上司への伝達はどうする? 日々の業務における上司とのミーティングでは、数値やグラフを使って整理しながら伝えることで、内容がわかりやすくなり、コミュニケーションがよりスムーズに行えると感じました。 販売戦略はどう進む? 現在の部門の販売方法については、POSデータを活用しながら整理した話し合いを進めています。「何をいつ、どれだけ販売すべきか、そのための行動はどうするべきか」について部門全体で認識を合わせ、行動に繋げていくことを目指しています。

戦略思考入門

視野を広げる戦略的思考のススメ

意見対立の要因は? 方針を定め、戦略を決める際に、各事業の意見や目的が異なるため、立場上の意見対立が生じることはよくあると感じました。実務に追われるあまり視野が狭くなることについても、自分自身にも覚えがあり、特に印象に残りました。適切な戦略を立てるには、定量的なデータと根拠をもとに各方面の意見を参考にすることが重要だと思います。また、思考だけで整理しようとすると混乱や抜け漏れが起きることが多いため、フレームワークを活用して論理的に組み立てることが必要です。 戦略の実態は? 現在、自分は戦略を考える立場にはいませんが、「自分の部署で取り組んでいる業務が会社にどのような影響を与えるのか」を常に意識しながら業務を進めていきたいと思います。上層部からの戦略をただ受け入れるのではなく、その戦略がどのような意見や現状をもとに立案されたのかを自分なりに分析し、「自分ならどうするか」を考えながら取り組んでいきたいです。 フレームの壁を感じる? フレームワークを実際に使用したことがないため、概要は理解できても実務に生かせるか不安を感じています。そこで実務でのフレームワークの使用頻度を増やし、視野を広げる試みをしたいです。施策を立案する機会が多いため、KGIやKPI達成のために「なぜそれをやるべきなのか」をフレームワークで整理し、納得してもらえる提案ができるようになりたいと考えています。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

データ・アナリティクス入門

データで切り拓く問題解決の未来

データで課題をどう切り分ける? 問題解決のプロセスやロジックツリー、MECE、あるべき姿と現実のギャップを定量的に把握するなどの知識は、実際に活用する際には難しさを感じました。特に、データの観点から課題を切り分ける作業はやや複雑でした。マーケティングや事業計画など多様な視点が浮かぶ中で、データに基づいて論理的に整理する必要性を実感しました。 深まったMECE理解の意味は? 総評として、問題解決プロセスやMECEの理解が深まったことは良い成果です。データの視点で課題を切り分ける挑戦には大きな可能性があります。今後経験を積み重ねることで、さらに力をつけていくことが期待されます。 日常業務にどう活かす? 学んだ知識を実務で活かすために、日常業務での意識的な取り入れが重要です。データ活用の支援においては、問題解決のプロセスを意識し、ロジックツリーを用いて問題の分解や特定を進めます。また、アンケートの相談が多いことから、その目的とKPIの確認を行い、MECEを意識した取り組みが必要です。 具体的なデータ活用法は? データ活用のサポートでは、問題解決のプロセスやロジックツリーを確認し、相手との認識を合わせ、問題点を明確にします。問題のあるべき姿と現実のギャップを定量的に示し、解決策の検討を行います。アンケート項目の確認においても、MECEを意識して進めていきます。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right