クリティカルシンキング入門

データ分析で見える!戦略立案の新視点

データ分解の重要性とは? データを分解することで、事象の原因について仮説を立てやすくなると理解しました。ただし、分解方法を誤ると要因が見えにくくなる場合があるため、複数のパターンで試行して最適な方法を見つける必要があります。また、分解には漏れなく重複なく全体を分解していくことが重要です。さらに、異なる切り口で分解することで、要因を特定しやすくなることも判明しました。 顧客分析で見つかるボトルネック 新規顧客と既存顧客に分けて、受注に至るまでの各プロセスにどのようなボトルネックがあるのか分析したいと考えています。同様に、業種や規模、地域といった異なる視点からも分析を行い、どこにアプローチをすれば最大の効果が得られるか仮説を立て、実践してみたいです。 効果的な営業戦略を立案するには? 営業戦略を立案する際には、まず業務プロセスを見直し、データを取得できるようにする必要があります。アプローチの回数や提案の回数、対面かWebかといった各種データを分析可能にするため、業務プロセスの改善から着手する必要があることが分かりました。

データ・アナリティクス入門

データ分析で見つけたWEB改善の秘密

WEBマーケで目指す成果とは? 私の業務はメーカーのWEBマーケティングに関するものであり、そのミッションは新規ユーザーをWEBページに集め、営業に引き渡すことで売上に貢献することです。具体的には、WEBページの閲覧状況を分析し、サイトの改善に役立てています。分析するデータには閲覧URL、流入キーワード、お問い合わせフォーム遷移率、その後の商談化率、売上金額などがあります。 分析の目的設定の重要性 分析においては、まず目的を明確にし、その目的を達成するために必要なデータの選定とどのように加工・分析するかを検討します。やみくもにデータを分析しても意味がないため、仮説を立てた上で分析を行うことが重要です。 業務スキルをどう活かす? 学んだことを業務に活かすために、まずは分析のフレームワークを学び、それを活用できるスキルを身につけました。グループワークを通じて、わかりやすく伝えるスキルも向上させ、学習を業務に積極的にアウトプットしています。これらのスキルと知識を活用して、より良いWEBサイトの作成と改善を目指しています。

クリティカルシンキング入門

データ分析の深さに触れる喜び

データ分析の楽しさとは? データの分析や加工を実際に自分で行えたことが非常に楽しかったです。Excelを使って学び直す経験も新鮮でした。データを複数の側面から切り分けることは久しぶりの学びでもありましたが、時間が限られているときにそれを実践するのは少し難しいと感じました。 数値を分解する面白さとは? 数値を扱う重要性や面白さを日常業務で感じることは年に数回ありますが、数値を分解していくと、表面では見えてこなかった関連性や有意差が明らかになるため、とても興味深いです。さまざまな切り口で分析することもありますが、アイデアが浮かぶときと浮かばないときがあるように感じます。 グラフ活用の重要性は? さらに、統計解析ソフトなどを利用すると、より面白い分析ができると思います。また、多様なグラフを作成することで、説得力のある説明が可能となると感じます。わかりやすく説明するためには、表よりもグラフの活用が重要だと思います。このような多様なグラフや可視化に関する技術も、データ分析とはまた異なる視点で学んでいくべきことだと思います。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

クリティカルシンキング入門

データ分析で実感した新たな視点の必要性

刻み幅の切り方はどう? データの傾向を把握するためには、「刻み幅の調整」が重要です。刻み幅によって、データの分布がどのように見えるかが変わるため、機械的な方法ではなく、どのように切ることで特徴が見えやすくなるかを仮説を立てて試みることが大切です。また、手元にある情報だけで判断すると視点が偏りがちなので、目的意識を持つデータ取得も必要です。 アンケート設計はどう進める? 今後、アンケート調査などを設計する際には、データの切り分け方を検討する際に役立てたいと思います。課題や事象の分析では、解釈の羅列ではなく、観点となる切り口を意識して情報を分解し構造化することが有効です。A for not Aの発想も活用できます。 定性情報はどう扱う? 業務においては、定性情報の示唆を分析する局面が多くあります。具体的には、プロジェクトのボトルネックの特定や、意思決定に影響を及ぼす要素の分析において役立てたいと考えています。ただし、定性情報を分解する際には、MECE的発想が必要かどうかを見極めたうえで活用することが重要となります。

データ・アナリティクス入門

論理的思考で業務の質を向上する方法

感覚から論理へと転換 分析に関連する数字やデータの意味付けについては、これまで感覚的に対応していました。しかし、今回の講義を通じて、論理的に整理する方法を学び、新鮮な驚きを感じました。また、過去にもウェブセミナーに参加したことはありますが、今回の講師の作る良好な雰囲気により、グループ内でも発言しやすく、今後のグループワークにも積極的に参加できそうでありがたかったです。 分析の目的を意識する 普段から財務データを扱い、日々分析に取り組んでいますが、「この分析の趣旨や目的は何か」という視点を常に意識しながら業務を遂行しようと考え直しました。また、分析に時間をかけすぎないよう心掛け、分析を基に仮説を立て、次の行動へと移行し、新しいデータの取得を目指したいと思います。 学びをどう業務に活かす? これらの学びや気づきを、私自身の業務に留めず、部下や後輩の指導にも活かしていきたいと考えています。分析に限らず、業務を指示する際には、その業務の趣旨や目的、共に目指すゴールを確認することで、業務の質とスピードを向上させたいです。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

アカウンティング入門

数字に迫る!企業評価の極意

財務三表の意味は? 業務で使用していた財務三表が、事業活動の全体像を把握し定量的に評価するためのツールであると再認識できたことは、有意義な学びでした。この経験を通して、企業評価の際にどこに着目すべきか、さらに深い理解が必要だと感じています。 管理や説明はどう? また、管理職として自社やチームの現状把握、さらには今後の方針検討に活かすことも目指しています。同時に、コンサルタントとしてクライアントに対し、定量的なデータだけでなく図表などの補助資料を活用し、より分かりやすく説明できるよう工夫することにも努めたいと考えています。具体的には、週次のレポートにおいてアカウンティング視点からの項目追加や精度向上を図るなど、数字の裏付けに基づいた分析を進めていく予定です。 分析をどう進める? 全体として、財務三表の再認識は、企業の強みや弱みを見極め、成長性や安定性を判断するための新たな視点を獲得する良い機会となりました。今後は、具体的なケースを通じて各財務表の評価ポイントを整理し、実践的な分析手法を身につけていきたいです。

クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

データ・アナリティクス入門

反論と仮説で広がる新視点

今週の経験に学ぶ? 私は人事部でDXに取り組み、最近はデータ分析を担当しています。今週も経営層からのご指摘があり、改めて反省する機会となりました。レポートの流れに特殊な点がある中で、社会人としての危機感を常に感じながら業務に取り組んでいます。 仮説の意義を考える? 指示内容は、様々な切り口で他社の人事データと比較することと、仮説を複数立てることでした。当初はどちらかに偏り、特に仮説に引っ張られすぎて決め打ちしてしまったため、網羅性が欠けた点がありました。しかし、教材のWEEK04を学ぶ中で、両方の重要性に気づくことができました。 具体策は何だろう? 具体的には、次の3点を意識することにしました。まず、決め打ちによる思考の狭まりを防ぐために、自分自身で反論や反証を考える習慣をつけます。次に、同じプロジェクトのメンバーにも仮説を立てる意義や、仮説作成のポイントを共有し、ディスカッションの時間を確保するようにします。そして、日常生活の中でもフレームワーク(3Cや4P)を意識して活用し、視野が広がるよう努めます。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right