クリティカルシンキング入門

成果を最大限引き出す資料作成術

スライド作成に重要なポイントは? スライドを作成する上で、まずは適切なフォントを選び、状況に応じた文字の色やアンダーラインを活用することが大切です。これにより、伝えたい内容がより分かりやすくなります。また、グラフを用いる場合は、読み手が理解しやすいように、文章の内容に合わせた順序や配置を意識し、内容に適したグラフの種類を選びましょう。 読者を引きつける構成とは? 良い文章を作成するためには、タイトルやリードで読者の興味を引くことが重要です。内容そのものが目的を押さえており、冗長にならないようにしつつ、読者が最後まで興味を持って読んでくれる構成にすることが求められます。 プレゼン資料に役立つ工夫とは? 業務改善や提案などのプレゼンテーション資料では、これらの文章の工夫やグラフの活用が有効で、幅広く応用が可能です。また、取引先や社内向けのメールやチャットでも同様の工夫が有用です。特に、相手が読みたくなるようなタイトルやリードを付け、伝えるべき内容や目的を明確かつ端的に表現することがポイントです。相手にわかりやすく伝えることを常に心がけましょう。 明確な伝達のために必要なことは? 何を相手に伝えたいのかをまず明確にし、それを冗長にならないように文章化します。アイキャッチを意識し、タイトルやリードに工夫を加え、端的でわかりやすい内容に整えます。そして、文章だけでなく視覚的にも訴えられるように、グラフを活用します。その際、必要な情報やデータが過不足なく入っているかを確認することも重要です。文字のフォント選びやグラフの選択・配置などにも工夫を凝らし、読み手にとって見やすいものに仕上げます。 読み手の心を掴む資料作成とは? 最後に、相手が最後まで読んでくれる内容になっているか全体を通して確認することが不可欠です。読み手の立場に立って、自分が作成した資料が理解しやすく、興味を持ってもらえるかどうかを考えながら進めることが、良い成果につながるでしょう。

クリティカルシンキング入門

クリティカルシンキングで成長する日々

クリティカルシンキングとは何か? クリティカルシンキングとは、自分の考えを吟味し、目的を明確にすること、そして自分や他者の思考の癖を前提に考えることの2つで成り立っています。これらを実践することで、多角的な視点を持ち、自分自身に問いかけ続けることでイシューの設定が明確になります。 自分を疑うことの重要性 Live授業中のグループワークで「クリティカルシンキングとは○○である」というテーマについてディスカッションした際、多くの参加者が「自分を疑うこと」をキーワードとして挙げていました。その意見を参考にし、私も「自分へ問う/疑う」ことの重要性を再認識し、問いと疑いの精度を上げるよう努めていきたいと考えました。 意識したコミュニケーション方法 また、部署や支店を越えたコミュニケーションにおいては、相手に分かりやすくするために言葉を省略しないよう心掛けています。特にメールやチャット、資料を基に説明する際にはその点を意識しています。会議では、何かを決めるべき事項が明確であるとき、イシューが不明確にならないようにし、議論が脱線しないよう努めています。後輩から業務相談を受けた際には、イシューを一緒に考えることで共に成長できるようにしています。 グラフから紐解く新しい視点 さらに、グラフ作成において前例に従うだけではなく、元データを見直し、異なる視点から新たなグラフを作成できるよう努めています。これは、言いたいことが明確であり、見やすいグラフにするためです。また、公式LINEアカウントのフォロワー増加計画においても、フォロワーの年齢や地域のデータを用い、グラフを作成し分析しています。 日常に活かすクリティカルシンキング 最後に、業務に限らずあらゆる課題に対しても、イシュー設定の際には多角的に考え、自分の思考の癖を意識しながら繰り返し問うことを実践しています。このようにして、クリティカルシンキングを日常的に活用することが大事だと感じています。

デザイン思考入門

できなくてもまずは見せる力

プロトタイプの意義は? 今週の学びは、プロトタイプを作り共有する力を実感した点にあります。頭の中で考えているだけでは見えてこなかった課題や視点も、形にして見せることで他者からのフィードバックが得られ、自分ひとりでは気づけなかった点や改善につながる方向性が浮かび上がりました。特に、「完成していなくてもいい」、「とにかく見せて意見をもらう」というスタンスが、新しい価値や学びを生み出すことに大きく寄与していると感じました。デザイン思考の「つくって考える、対話して深める」姿勢は、変化が激しく正解が一概に決まらない現代の仕事において、大きな武器になると実感しています。 提案の伝え方は? 私の仕事では、データ活用やDXを推進する中で、提案内容の伝え方が常に課題となっています。例えば、勉強会の構成やダッシュボードの設計、展示会のコンテンツなどを一人で考え抜くのではなく、早い段階で仮の構成やプロトタイプをチームや対象者に見せ、反応を確認することで、よりニーズに沿った形に近づけることができると感じました。このプロセスは、関係者との共創を促すきっかけともなり、プロトタイピングが単なる手法以上の意味を持つことを教えてくれました。 改善の具体策は? 今後は、以下の3点を意識して実践していきたいと思います。まず①「たたき台」を意図的に作ることです。提案資料やイベント構成は、一人で完成させる前にドラフトを共有し、意見を募る仕組みを取り入れます。次に②フィードバックをもらう文化を育てる点。同僚や他部署とプロトタイプを見せ合い、意見交換をすることで、互いにアイデアを磨き合う習慣を作りたいです。そして③受けた反応をもとに柔軟に変更すること。まず出してから修正するといった循環を業務の進め方に定着させ、迅速な改善を図ります。 これらの取り組みを通じ、完璧なものを最初から求めるのではなく、共により良いものにしていくというマインドセットをチーム全体に広げていきたいと考えています。

データ・アナリティクス入門

数字と式が開く学びの扉

数式への意識はどう? やっと、数式や数字の取り扱いが登場して安心しました。データ加工は、数字、図、数式を扱うものであり、普段はなんとなく利用していたものの、特に数式については意識して使っていなかったので、この機会にしっかりと意識できるようになりました。 代表値の使い分けは? 代表値については、平均値、中央値、そして最頻値の3種類があり、高校で学んだ記憶があります。状況や特徴に合わせて適切に使い分けることが必要だと感じました。 散らばりをどう捉える? また、散らばりに関しては、分散、偏差、標準偏差という概念があります。これらのイメージがつかめると、グラフ作成時の種類の選択や切り口の検討に役立つと考えています。正規分布や、偏差を標準偏差に変換する方法を理解できれば、さらに活用の幅が広がると感じました。 応用範囲はどう広がる? これらの手法やツールは、あらゆる業務や自分自身の行動パターンにも応用できると考えています。新しい仕事で具体的に何をどこまで行うかはまだ決まっていませんが、逆にどのような状況にも対応できるはずです。以前の仕事では、過去のデータや何かとの比較で数%の違いを強調していたことがありましたが、散らばりが大きい場合、その違いが意味を成さないこともあるため、今後は数字を見る際にその点を意識していきたいと思います。 習熟のための練習は? まずは練習として、代表値をいろいろと算出しながら使い方に習熟していきたいです。数式は単に暗記するのではなく、意味や算出方法を理解し、それを活かすことで活用の幅を広げることを目標としています。以前、統計学の教科書を購入して半分ほど学び直した経験があるため、改めて復習しながら残りの部分も学習していきたいです。 散らばりから何を探る? また、散らばりの大小からどのような検証ができるのか、またどんな示唆が得られるのかをさらに深めたいと思います。最後に、統計検定にも挑戦する予定です。

データ・アナリティクス入門

限界突破!数字が紡ぐ経営判断

仮説検証はどう進める? Gミュージックスクールの採用問題を通して、「仮説立案→データ検証→解決策選択」のプロセスを実際に考える機会となりました。特に、機会コストの概念を用いて「何を諦めるか」を定量的に評価する重要性に気付かされ、データ分析によって感覚的な判断を論理的な根拠に基づく戦略へと変換する価値を実感しました。また、限界に近づいていたある従業員の工数という制約条件下で最適解を導く過程は、現実のビジネス課題の複雑さを改めて認識させ、完璧ではない解決策を採用する経営判断の難しさも感じさせました。 受注と労働はどう連携? 一方、労働集約型の企業においては、顧客獲得と労働力確保が相互に関連していると実感しています。今回学んだデータ分析手法を活用し、営業データ(受注量、案件規模、事業部別実績)と人材データ(残業時間、採用状況、離職率)の相関分析に取り組む予定です。具体的には、受注増加期における人材不足と残業の関係を定量化し、適切な採用タイミングと人員配置の予測モデルを構築することを目指しています。また、機会コストの視点から優秀な人材の流出による売上機会の損失を算出し、採用および定着への投資の優先順位を検討する考えです。 数値で見る採用戦略は? まずは、日々収集している営業データと人材データを統合管理できるダッシュボードを構築し、問題の可視化を図ります。次に、相関分析と予測モデルの検討を通じ、「受注増加期の人材不足が残業の増加、ひいては離職率の上昇という負のスパイラル」にどのような影響があるかを定量的に捉え、適切な採用タイミングを予測するモデルを作り上げます。さらに、戦略的人材投資を実践するために、機会コスト分析によって優秀人材の定着に伴う投資効果を算出し、個別の引き留め戦略を検討します。特定の熟練者への依存構造も可視化し、業務の標準化やスキル継承プログラムの整備により、事業成長と人材確保のバランスをより戦略的に実現する経営体制への転換を目指します。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

戦略思考入門

ビジネスの成功法則で固定費削減へ

法則はどう活かす? ビジネスの法則を知り、それを活用することで、一から考える時間を短縮できます。しかし、その法則を正しく活用することが重要です。自社製品の特性や季節商品の年間を通した生産量や販売量の把握をし、全体像を捉えることが必要です。 戦略は何が鍵? 事業戦略を考える際には、コスト低減の法則として、規模の経済性、範囲の経済性、習熟効果、ネットワークの経済性などがあります。例えば、製薬業界では膨大な研究開発費が必要になります。販売量が少ないと製品一つあたりの研究開発費が高くなってしまうため、M&Aを通じて事業規模を拡大しようとする動きがあります。また、範囲の経済性は、食品業界で培った技術を他の業界の製品に転用することを指します。 例外は何だろう? ただし、この定石にも例外があります。ビジネスが複雑化し、それぞれの事業をマネージするコストが高くなる場合です。この場合、事業を分割して独立した会社にすることでコストが適正化されることもあります。 法則で何が改善? 今回学んだコスト低減の法則を基に、自社の現行業務の課題に対してもともと考えていた機器の導入費自体を下げて固定費を削減し、機器の稼働率を上げる取り組みを進めることができると明らかになりました。また、ネットワークの経済性に近いサービスアイデアを検討中であり、その方向性で進めていきます。 人件費はどうする? 人件費を削減するために、業務上作業に近い内容を切り出し、派遣社員の導入も検討しています。この導入によって社員の時間が奪われ続けないよう、導入の影響を慎重に見極めることが重要です。 次の一手は? 現在、機器の導入費や維持費の算出中であり、データが出揃った時点で固定費削減と稼働率向上のために何ができるか、チームでアイデア出しを行う予定です。また、業務に近い作業の切り出しと派遣会社の情報収集も進めていきます。これらの取り組みは、来週から開始します。

クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

クリティカルシンキング入門

データの切り口を見直して発見した新たな視点

切り口を考える意義とは? 分解する前に切り口を考えることの重要性を再認識しました。切り口を考える際には、仮説を持って臨むことが大切だということを学びました。 データ分析に仮説は必要? 今回の講義の演習には、「切り口を考える」場面が多く含まれていました。これはデータ分析を行う際、多様な視点が必要であることを示しています。そして、「切り口を考える」ためには、現時点での仮説を持つことが重要だと感じました。過去にデータを分析しようとした経験があり、当初はデータの傾向を捉えようとしていましたが、進捗が思わしくありませんでした。しかし、過去の経験から推測を立て、それに基づいてデータを精査すると傾向が見えてきました。この経験は、今回学んだ内容そのものであると改めて感じました。 正誤判断で新たな発見を? 仮説を持ち、切り口を考えてデータを見ることで、自分の仮説の正誤を判断するだけでなく、仮説が誤っていた場合でも、その仮説と実際の結果を比較検討できます。これにより、新たな解釈や仮説が生まれ、データに対する理解が深まるのです。 業務への具体的な応用は? このアプローチは、ソフトウェアの期限切れ対応のコスト分析や障害発生時のデータ分析など、直接的な業務にも応用できます。また、プロジェクト立ち上げ時には、コスト評価や対応内容の妥当性を説明する資料の作成が必要ですが、その際には票だけでなくグラフも加えて分かりやすくしたいと考えています。 仮説を立てることの効果とは? これまで、コスト分析というと、ただ数字をマトリックスやグラフにまとめるだけでしたが、それは単なる事実の整理に過ぎませんでした。今後はデータを整理・解析する前に目的を明確にし、その目的と過去の経験から仮説を立て、その仮説に応じた切り口でデータを整理していきたいと考えています。これにより、わかりやすい資料作成だけでなく、コストダウンの端緒を見つけることができるかもしれません。

クリティカルシンキング入門

データで見つける思考の新発見

データ分解で何が見える? 与えられたデータをどのように分解するかによって、見えてくるものが大きく変わることを体感しました。また、グラフに可視化することで、数字だけでは見えない傾向が明確に浮き彫りになることも理解できました。 思考癖に気づく理由は? データを要素別に分解した際、関連しそうなものを安易に結びつけて一つの傾向として捉えてしまう自分の思考の癖に気づきました。本当にその傾向が正しいのかを確認せず、安直に結論を出して解決策を立てるのではなく、その仮説をもとにさらに分解し、複数の切り口から丁寧に検討することが必要だと感じました。具体的には、「who」「when」「where」「how」といった視点から考えることを学びました。 ターゲット分析はどう進む? また、あるホテルでの活動において、ゲストが楽しみながら地球環境や社会に貢献できるようなサービスを考案する際には、ターゲットを定めるだけでなく、既存の客を分析するために今回学んだ切り口が役立つと感じました。例えば、「who」年代別、属性、「where」出身国、「what」目的、「when」時間帯、「why」選択理由、「how」交通手段や情報源などです。 サービス評価のタイミングは? さらに、カスタマーサービスを分析する際にはプロセスの分解を行い、滞在のどのタイミングで満足度が高いのか、また低いのかを理解し、サービス改善に努めたいと思いました。 根拠をもとに提案は? このような視点から考慮することで、事象の解像度が上がり、思いつきでなく根拠をもとにアイディアを提案できると感じます。日々の業務でアイディアを提案する際には、データをどのように分解して仮説を立てたかを説明することが重要だと思いました。また、「事象分解」「変数分解」「プロセス分解」のいずれかの方法が適しているのか、また切り口を5W1Hから考慮するなど、丁寧に思考する癖をつけることが大切だと考えます。

戦略思考入門

戦略思考で描く未来の10年

戦略思考の意味とは? 今回の講義を通じて、戦略思考という言葉の意味を改めて理解することができました。その中で、私はゴール設定を明確にすることが自分の弱点であると気付きました。昨年までは営業の仕事で、既に決まった戦略や戦術を実行することが求められ、短期的なゴールを考えていました。今後はゴールを設定し、逆算して必要なことを明確にする思考を身につけていきたいです。特に、長期的視点での考え方を学びたいと考えています。 製薬業界での戦略活用法 現在、製薬業界でプラン立案やKOLコミュニケーションを行っており、そこで戦略思考を活用できると考えています。具体的には、ブランドやメディカル、マーケティングの各プランの立案において、承認前から作成に取り掛かり、発売から10年後を見据えた未来像を描いています。現状の医療課題と将来の環境変化を予測し、10年後のゴールを設定し、そこから逆算して5年後や発売時点での到達目標を考慮しています。 KOLコミュニケーションの具体化 また、KOLコミュニケーションでは、設定したゴールに向けた活動を、アドバイザリー会議やKOL面談を通じて具体化しています。長期と短期の視点から課題の優先順位を決め、行動に落とし込むことで、目的意識を持てると考えています。 適切なゴール設定の重要性 業務上のプラン立案では、長期的な視点でのゴール設定が重要です。社内外の関連者と意見交換を行い、製品特性や競合の活動、学会やKOLからの最新の医療情報を活用して最適なゴールを設定します。承認時から10年後にかけてのあるべき姿を逆算して設定し、承認時点での製品の懸念事項を洗い出し、適正使用の推進や発売後の必要データの優先順位を決めていきます。具体的な活動も明確化し、発売前後の優先課題にはアドバイザリー会議などをスケジュールに組み込み、市販後の活動内容についても市販後データジェネレーションの時期に合わせて決定していきます。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right