データ・アナリティクス入門

ロジックツリーで解決する新たな視点の探求

決定木と共通点は? ロジックツリーは問題解決に役立つと感じました。特に決定木と類似している点があることに気付きました。問題解決にはロジックツリーを利用し、業務フローを考えることは個人的に決定木のように解釈しています。「決定木」については、個別に確認を行ってみたいと考えています。 分解手法は何が違う? 層別分解については、粒度を揃えて階層毎に記載し、全体的な視点で考えることが重要だと感じました。変数分解では、細分化することで解決策を検討することが可能となります。 フロー分析は有効? 私は業務フロー分析を行い、RPA(自動化)のタスクを考えることがあります。問題解決プロセスを活用して、層別分解を業務フローに応用してみようとしています。 変数分解を深める? 変数分解は、利用頻度が低かったため、まだ理解が浅いと思います。すぐに実用できるアイデアは浮かびませんが、望む結果に至らなくても、試行錯誤を続けて活用できるよう努力したいです。 集計から何を探る? データ集計の結果を元に、ロジックツリーを用いて、漏れや重複をなくすだけでなく、別の観点での検証が可能かどうかを探りたいです。 KPI改善の鍵は? KPIのデータ集計結果において、乖離や数値の増減があった場合には、ロジックツリーを使って分析しています。MECEをベースに、問題解決に向けた改善活動に取り組んでいます。改善活動自体にもロジックツリーを適用してみることを考えています。 他チームの意見は? 他チームの分析結果にもロジックツリーを用いて、新しい視点が得られるかを検証したいです。他チームの報告を聞く際、通常は前提が正しいという説明を受けますが、その場で疑いを持っても、すぐに相違点を指摘するのは難しいです。 日常でどう活かす? 日常の業務において、データ分析以外にもロジックツリーを様々に適用し、考える習慣を試してみます。活用範囲を広げ、新たな気づきやスキルを獲得できればうれしいです。

クリティカルシンキング入門

小さな分解で見える大発見

分解で見える真実は? 分解を行うことで、従来の全体からは見えなかった事実を得ることができると実感しました。例えば、年齢などの区分を均等に分けるのではなく、生データの特徴に合わせた切り口で分解することが重要であると知り、自分自身も改善すべき点だと思いました。実際、いくつかの切り方を試して分析を重ねることで、より適切な理解が深まると感じています。 切り口は何が違う? また、従来は層別分解が得意でしたが、変数分解やプロセスごとの分解など、異なる切り口も学ぶことができました。分解を始める前に全体像を明確に定義すること、すなわち目的を明確にするというクリティカルシンキングの基本が、データ分析においても非常に重要であることを再認識しました。 ウェブの解析はどう? 私の業務では、ウェブシステムのパフォーマンス分析や運用業務の効率化に取り組んでいます。パフォーマンス分析では、レスポンスタイムやエラー率など、様々な指標を機能別、リクエスト別、時間帯別に分解して検証することで、新たな知見を得る可能性が広がっていると感じています。 業務効率の見直しは? また、運用業務の効率化においても、単に忙しさを感じるのではなく、実際に業務に費やす時間を計測し、プロセスや対応内容ごとに分解することで、根本的な原因や改善ポイントが見えてくると実感しています。 ラベリングはどう大切? さらに、データを正確に分解して活用するためには、収集や計測の段階で最小単位までしっかりとラベリングすることが不可欠だと感じました。全体の傾向は平均や合計から把握できるものの、細分化したデータを分析するには、各サンプルがどのグループに属するのかが明確でなければなりません。 知見の信頼はどう生む? そのため、今後も日常的にデータを分解して分析することを念頭に置き、様々な切り口から知見を得られるよう努めたいと思います。いかなる知見が得られても、それが確かなものであるか否かを常に疑い、裏付けを求める姿勢を維持していきたいと考えています。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

戦略思考入門

本質を追求する戦略習得の旅

戦略はどう明確に? 戦略立案においては、最初に「誰に対して、どのような価値を提供するか」を明確にすることが重要です。戦略や手法は、その後に検討すべき手段であり、それ自体を目的とするべきではありません。しばしばこの順序が逆転しがちで、手法が先行してしまう傾向があります。 差別化の秘訣は? 差別化に関しては、見かけだけでなく顧客にとって本質的な価値を持つ差別化が必要です。持続的な競争優位を築くには、競合他社が簡単に模倣できない要素を見出すことが不可欠です。差別化戦略は単に「他社との違いを作る」ことではなく、「顧客価値の創造」と「持続可能な競争優位の構築」を目的としています。これには、VRIOフレームワークが実践的なチェックリストとして有効であることを学びました。 ジムの真価は? 実例としては、あるフィットネスジムのように、「他のジムよりも高価格」であることが表面的な差別化です。しかし、その本質的な価値は「確実な結果を得られる安心感」や「マンツーマン指導によるサポート」、「高額投資による強制力」などが挙げられます。そして、それらの価値を持続的に提供するために、組織としてどのような体制を整えるかが重要です。 VRIOの立ち位置は? まずはVRIOフレームワークで自社の立ち位置を明確にしたいと思っています。私たちが提供できる価値や他社と比べての希少性、模倣困難性、組織としての行動を整理し、それを新規営業での提案資料として活用することが目指すところです。 既存客価値はどう? まず既存クライアントへの価値提供を強化し、VRIOフレームワークの各項目を確立します。たとえば、在庫管理システム案件の着実な遂行や生成AIを活用した業務効率化の提案資料作成、データ分析レポートの質的向上に取り組んでいます。 外部資源はどう活かす? さらに、外部リソースの確保も進めています。具体的には協力会社やフリーランスの選定、業務の切り分けの検討、引継ぎドキュメントの準備を行っています。

クリティカルシンキング入門

成果を最大限引き出す資料作成術

スライド作成に重要なポイントは? スライドを作成する上で、まずは適切なフォントを選び、状況に応じた文字の色やアンダーラインを活用することが大切です。これにより、伝えたい内容がより分かりやすくなります。また、グラフを用いる場合は、読み手が理解しやすいように、文章の内容に合わせた順序や配置を意識し、内容に適したグラフの種類を選びましょう。 読者を引きつける構成とは? 良い文章を作成するためには、タイトルやリードで読者の興味を引くことが重要です。内容そのものが目的を押さえており、冗長にならないようにしつつ、読者が最後まで興味を持って読んでくれる構成にすることが求められます。 プレゼン資料に役立つ工夫とは? 業務改善や提案などのプレゼンテーション資料では、これらの文章の工夫やグラフの活用が有効で、幅広く応用が可能です。また、取引先や社内向けのメールやチャットでも同様の工夫が有用です。特に、相手が読みたくなるようなタイトルやリードを付け、伝えるべき内容や目的を明確かつ端的に表現することがポイントです。相手にわかりやすく伝えることを常に心がけましょう。 明確な伝達のために必要なことは? 何を相手に伝えたいのかをまず明確にし、それを冗長にならないように文章化します。アイキャッチを意識し、タイトルやリードに工夫を加え、端的でわかりやすい内容に整えます。そして、文章だけでなく視覚的にも訴えられるように、グラフを活用します。その際、必要な情報やデータが過不足なく入っているかを確認することも重要です。文字のフォント選びやグラフの選択・配置などにも工夫を凝らし、読み手にとって見やすいものに仕上げます。 読み手の心を掴む資料作成とは? 最後に、相手が最後まで読んでくれる内容になっているか全体を通して確認することが不可欠です。読み手の立場に立って、自分が作成した資料が理解しやすく、興味を持ってもらえるかどうかを考えながら進めることが、良い成果につながるでしょう。

クリティカルシンキング入門

クリティカルシンキングで成長する日々

クリティカルシンキングとは何か? クリティカルシンキングとは、自分の考えを吟味し、目的を明確にすること、そして自分や他者の思考の癖を前提に考えることの2つで成り立っています。これらを実践することで、多角的な視点を持ち、自分自身に問いかけ続けることでイシューの設定が明確になります。 自分を疑うことの重要性 Live授業中のグループワークで「クリティカルシンキングとは○○である」というテーマについてディスカッションした際、多くの参加者が「自分を疑うこと」をキーワードとして挙げていました。その意見を参考にし、私も「自分へ問う/疑う」ことの重要性を再認識し、問いと疑いの精度を上げるよう努めていきたいと考えました。 意識したコミュニケーション方法 また、部署や支店を越えたコミュニケーションにおいては、相手に分かりやすくするために言葉を省略しないよう心掛けています。特にメールやチャット、資料を基に説明する際にはその点を意識しています。会議では、何かを決めるべき事項が明確であるとき、イシューが不明確にならないようにし、議論が脱線しないよう努めています。後輩から業務相談を受けた際には、イシューを一緒に考えることで共に成長できるようにしています。 グラフから紐解く新しい視点 さらに、グラフ作成において前例に従うだけではなく、元データを見直し、異なる視点から新たなグラフを作成できるよう努めています。これは、言いたいことが明確であり、見やすいグラフにするためです。また、公式LINEアカウントのフォロワー増加計画においても、フォロワーの年齢や地域のデータを用い、グラフを作成し分析しています。 日常に活かすクリティカルシンキング 最後に、業務に限らずあらゆる課題に対しても、イシュー設定の際には多角的に考え、自分の思考の癖を意識しながら繰り返し問うことを実践しています。このようにして、クリティカルシンキングを日常的に活用することが大事だと感じています。

デザイン思考入門

できなくてもまずは見せる力

プロトタイプの意義は? 今週の学びは、プロトタイプを作り共有する力を実感した点にあります。頭の中で考えているだけでは見えてこなかった課題や視点も、形にして見せることで他者からのフィードバックが得られ、自分ひとりでは気づけなかった点や改善につながる方向性が浮かび上がりました。特に、「完成していなくてもいい」、「とにかく見せて意見をもらう」というスタンスが、新しい価値や学びを生み出すことに大きく寄与していると感じました。デザイン思考の「つくって考える、対話して深める」姿勢は、変化が激しく正解が一概に決まらない現代の仕事において、大きな武器になると実感しています。 提案の伝え方は? 私の仕事では、データ活用やDXを推進する中で、提案内容の伝え方が常に課題となっています。例えば、勉強会の構成やダッシュボードの設計、展示会のコンテンツなどを一人で考え抜くのではなく、早い段階で仮の構成やプロトタイプをチームや対象者に見せ、反応を確認することで、よりニーズに沿った形に近づけることができると感じました。このプロセスは、関係者との共創を促すきっかけともなり、プロトタイピングが単なる手法以上の意味を持つことを教えてくれました。 改善の具体策は? 今後は、以下の3点を意識して実践していきたいと思います。まず①「たたき台」を意図的に作ることです。提案資料やイベント構成は、一人で完成させる前にドラフトを共有し、意見を募る仕組みを取り入れます。次に②フィードバックをもらう文化を育てる点。同僚や他部署とプロトタイプを見せ合い、意見交換をすることで、互いにアイデアを磨き合う習慣を作りたいです。そして③受けた反応をもとに柔軟に変更すること。まず出してから修正するといった循環を業務の進め方に定着させ、迅速な改善を図ります。 これらの取り組みを通じ、完璧なものを最初から求めるのではなく、共により良いものにしていくというマインドセットをチーム全体に広げていきたいと考えています。

データ・アナリティクス入門

数字と式が開く学びの扉

数式への意識はどう? やっと、数式や数字の取り扱いが登場して安心しました。データ加工は、数字、図、数式を扱うものであり、普段はなんとなく利用していたものの、特に数式については意識して使っていなかったので、この機会にしっかりと意識できるようになりました。 代表値の使い分けは? 代表値については、平均値、中央値、そして最頻値の3種類があり、高校で学んだ記憶があります。状況や特徴に合わせて適切に使い分けることが必要だと感じました。 散らばりをどう捉える? また、散らばりに関しては、分散、偏差、標準偏差という概念があります。これらのイメージがつかめると、グラフ作成時の種類の選択や切り口の検討に役立つと考えています。正規分布や、偏差を標準偏差に変換する方法を理解できれば、さらに活用の幅が広がると感じました。 応用範囲はどう広がる? これらの手法やツールは、あらゆる業務や自分自身の行動パターンにも応用できると考えています。新しい仕事で具体的に何をどこまで行うかはまだ決まっていませんが、逆にどのような状況にも対応できるはずです。以前の仕事では、過去のデータや何かとの比較で数%の違いを強調していたことがありましたが、散らばりが大きい場合、その違いが意味を成さないこともあるため、今後は数字を見る際にその点を意識していきたいと思います。 習熟のための練習は? まずは練習として、代表値をいろいろと算出しながら使い方に習熟していきたいです。数式は単に暗記するのではなく、意味や算出方法を理解し、それを活かすことで活用の幅を広げることを目標としています。以前、統計学の教科書を購入して半分ほど学び直した経験があるため、改めて復習しながら残りの部分も学習していきたいです。 散らばりから何を探る? また、散らばりの大小からどのような検証ができるのか、またどんな示唆が得られるのかをさらに深めたいと思います。最後に、統計検定にも挑戦する予定です。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

戦略思考入門

ビジネスの成功法則で固定費削減へ

法則はどう活かす? ビジネスの法則を知り、それを活用することで、一から考える時間を短縮できます。しかし、その法則を正しく活用することが重要です。自社製品の特性や季節商品の年間を通した生産量や販売量の把握をし、全体像を捉えることが必要です。 戦略は何が鍵? 事業戦略を考える際には、コスト低減の法則として、規模の経済性、範囲の経済性、習熟効果、ネットワークの経済性などがあります。例えば、製薬業界では膨大な研究開発費が必要になります。販売量が少ないと製品一つあたりの研究開発費が高くなってしまうため、M&Aを通じて事業規模を拡大しようとする動きがあります。また、範囲の経済性は、食品業界で培った技術を他の業界の製品に転用することを指します。 例外は何だろう? ただし、この定石にも例外があります。ビジネスが複雑化し、それぞれの事業をマネージするコストが高くなる場合です。この場合、事業を分割して独立した会社にすることでコストが適正化されることもあります。 法則で何が改善? 今回学んだコスト低減の法則を基に、自社の現行業務の課題に対してもともと考えていた機器の導入費自体を下げて固定費を削減し、機器の稼働率を上げる取り組みを進めることができると明らかになりました。また、ネットワークの経済性に近いサービスアイデアを検討中であり、その方向性で進めていきます。 人件費はどうする? 人件費を削減するために、業務上作業に近い内容を切り出し、派遣社員の導入も検討しています。この導入によって社員の時間が奪われ続けないよう、導入の影響を慎重に見極めることが重要です。 次の一手は? 現在、機器の導入費や維持費の算出中であり、データが出揃った時点で固定費削減と稼働率向上のために何ができるか、チームでアイデア出しを行う予定です。また、業務に近い作業の切り出しと派遣会社の情報収集も進めていきます。これらの取り組みは、来週から開始します。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right