データ・アナリティクス入門

データで読み解く新たな発見の旅

代表値の意義は何? 平均値や中央値は、データを簡潔に理解するための「代表値」として便利です。これらはデータ全体をおおまかに把握するために使用されます。しかし、平均値はデータのばらつきや偏りを考慮しないため、標準偏差などの指標を使ってそのデータの分散を理解することも重要です。ヒストグラムはデータのばらつきをしっかり理解するのに役立ちますし、円グラフは構成要素が占める割合を視覚的に捉えるのに有効です。特に、データに際立ったばらつきがある場合は、その点に焦点を当てて分析することで問題を深堀りしやすくなります。 計算方法の違いは? 代表値の計算方法には、単純平均や加重平均、幾何平均、中央値など様々な種類があります。単純平均は全データの合計を個数で割ったもの、加重平均は各数値に重みを付けて算出するもの、幾何平均は冪根を使って計算します。特に平均値が極端な外れ値の影響を受けやすい場合には、中央値を使用するのが適しています。 標準偏差の役割は何? また、データの散らばりを理解するために標準偏差も重要な指標です。標準偏差は、データの各値との差の二乗の平均として計算され、データのばらつきを数値で示します。さらに、標準偏差の68%ルールや95%ルールは、データの大部分がどの範囲に収まるかを示し、これも理解を助けます。 業務整理にどう活かす? このような統計手法は、顧客の業務を整理する際に役立ちます。例えば、どの業務パターンを外れ値として除外すべきか、それがなぜ合理的なのかを論理的に説明できれば、業務要件をシンプルにするのに貢献します。加重平均を使用して、一部のケースでのみ発生する業務パターンを無視しても影響が小さいことを示したり、幾何平均で業務量の年次増加率を算出し、将来のシステム投資を提案することもできます。このようなシナリオが他にもないか、引き続き検討していきたいと思います。

クリティカルシンキング入門

グラフとメッセージ、一致させる極意

グラフとメッセージは合致? グラフと見せ方の工夫として、メッセージとの整合性が重要であることが印象に残りました。これまで、既に作成されたグラフをそのまま資料に使用していましたが、本当にメッセージと一致していたかはあまり考えたことがありませんでした。今後は、メッセージと図、グラフの相関性を考慮し、適切なものを選択していきたいと思っています。 フォントの印象はどう? 見せ方の工夫では、フォントや色によって与える印象という点も考えさせられました。これまでは、多くの装飾や色を使っていたため、読み手を意識しつつ、最小限でわかりやすく示すことを心がけたいです。 アイキャッチは効果的? また、読んでもらうための工夫として、アイキャッチや文章の硬軟、体裁が挙げられていました。その中でも、アイキャッチに関しては、人によって受け取られ方が異なるため、一般的にどんな内容ならイメージしやすいかに悩みました。 学んだ知識を活かす? 今回学んだ内容は、以下の自分の業務に活かせると考えました。物性比較やネガティブキャンペーンなどの比較データには、最適なグラフや表を適用し、分かりやすくまとめる方法が使えると思いました。また、社内外の報告用資料やメール、議事録においては、読んでもらう工夫としてアイキャッチを置くことや、体裁を整えて読みやすくすることに役立てたいです。読み手を意識し、内容作成を心がけていきます。 報告書の工夫は? メールや報告書を書く際は、単に文章を書くのではなく、タイトルの工夫や体裁を整えることで、読み手が理解しやすくなるように構成します。パワーポイント資料作成においては、キーメッセージと内容が一致しているか、第三者に確認してもらいます。過剰な強調を避けるためにも、資料作成後に内容を見直します。グラフ作成においても、示したいメッセージとグラフが一致しているかを意識したいと思います。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

戦略思考入門

選択と捨てる勇気で未来を切り開く

どんな選択が必要? 私たちが何を得るかと同じくらい、何を捨てるかという選択の重要性を学びました。戦略の一環として「捨てる」ことに対して、明確な見通しを持ち、周囲に適切に伝える準備が大切だと感じました。 何のために捨てる? 選択(捨てる)の必要性は、顧客にとってのメリットが向上する場合があることを再確認する点にあります。具体的には、「何のために?」という視点をしっかり持つことが重要です。時には、捨てることで顧客の利便性が増すことがあります。例えば、あるパフォーマンス集団が動物を排除することで、人間の高度なパフォーマンスに注力できるようになったという具体例が理解を深めました。 なぜ変革が必要? 長年の惰性に流されず、現状から最適な解を探求することが肝心です。「やめましょう」という勇気を持ち、新しい意見を取り入れることも重要で、これが惰性による無駄を排除するヒントとなります。 業務はどう見直す? 業務プロセスの見直しにおいては、優先度の低いタスクを削減し、手動作業を自動化・簡素化することが必要です。サポート範囲の見直しでは、対象の中止や範囲を低減し、FAQやセルフサポートを導入するといった方法があります。データの管理と報告の効率化として、不要なデータを整理し、報告を簡略化することが挙げられます。 再構築はどう進む? 「捨てる」という選択は価値を高めるための再構築と覚悟すべきです。具体的には以下のステップが有効です。まずは目標と優先順位の明確化を行い、リソースの把握を通じて捨てるべき項目の候補を挙げます。その後、捨てる対象を決定し、チームで共有します。そして、捨てた後の行動計画を策定し、計画的に新たに生まれたリソースを活用します。最後に、実行後はモニタリングを行い、捨てた結果が本当に改善されているかを確認することが大切です。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

リーダーシップ・キャリアビジョン入門

仕事の任せ方で変わる部下の成長

任せ方の見直しは? 自分の仕事の任せ方が、相手にとって過度な負荷になることがあると知りました。 選択にリスクは? 演習では、データ入力の後にどんな仕事を任せるかというワークがありました。私は、いきなり経営陣にプレゼンする資料を作成させるという仕事を選びました。当時の私はこれが最適だと思って選択しましたが、その選択にはリスクがあることが示唆されました。 成長重視で良い? 成長や経験に重点を置きすぎると、部下の能力や気持ちが追いつかないことがわかりました。個人的には追いつかなくても良い経験だと思っていましたが、仕事の成果に重点を置くとリスクがある選択であり、部下のモチベーションにもリスクとなることを学びました。 新人育成はどう? これから新しく配属されるメンバーの育成を担当することになります。新人育成では、お客様との相談業務を行えるようにするのがゴールですが、すぐには難しいため、少しずつ任せることが必要です。今回の学びは、この育成業務に大いに活かせます。 既存メンバーの活用は? もちろん、既存メンバーに対する仕事の任せ方としても活用できるスキルなので、意識して使っていきたいと思います。 ゾーンの境界は? まずは新規メンバーの育成に活用します。相手の能力や気持ちを確認しながら、ストレッチゾーンになりうる仕事を任せていきたいと考えています。具体的には、ストレッチゾーンとコンフォートゾーン、パニックゾーンの境界線を探りながら進めていきます。 目標再設定は? 次に、既存メンバーへの目標進捗ミーティングに活用します。今期は3ヶ月が過ぎ、状況も変化しているので、ミーティングを設定し、どんなことをどのくらい、どのように行ってほしいかを再設定したいと思います。部下が前向きに取り組める部分を確認し、再設定を行います。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right