データ・アナリティクス入門

ナノ単科で挑む仮説の実践

仮説って何? ビジネス現場での仮説とは、ある論点に対する暫定的な答えを示すものであり、大きく「結論の仮説」と「問題解決の仮説」に分けられます。状況に応じて、過去・現在・未来それぞれで仮説の内容が変わる点も特徴です。 解決と結論は? 問題解決の仮説は、具体的な課題に対して原因を究明するためのものです。一方、結論の仮説は、たとえば新規事業においてある論点への暫定的な答えを示す際に用いられます。 4ステップの流れは? 問題解決のプロセスは、次の4つのステップで進めます。まず、Whatとして問題が何であるか、またその規模を把握します。次にWhere、すなわち問題の所在を特定します。その後Whyとして、なぜその問題が発生したのか原因を追及し、最後にHow、どのように対策すべきかを検討します。 仮説はどう練る? 仮説を立てる際には、決め打ちせず複数の仮説を考えることが重要です。異なる観点や組み合わせから仮説を立てることで、情報の扱いに網羅性が生まれ、柔軟な解決策を導く助けとなります。 現状把握は大事? 施策の検討では、すぐに解決策に飛びつかず、まずは現状を十分に把握することが求められます。たとえば、見込み顧客を効率的に集めたい場合、SEO対策やウェビナーをすぐに試みるのではなく、なぜ見込み顧客が増えないのか、実際に問い合わせをしてくれる顧客の層やニーズを確認した上で仮説を立て、ABテストなどで検証するプロセスが大切です。 営業仮説の効果は? また、営業面においても、現状の状況・業務上の問題・その影響、そして解決された場合のメリットを問い直すことで、仮説の思考は効果を発揮します。これは、営業メソッドであるSPINの各質問(状況質問、問題質問、示唆質問、解決質問)とも通じる考え方です。 顧客行動はどう見る? さらに、顧客の行動分析の際は、カスタマージャーニーマップを作成するにあたって、こちらの期待する行動ではなく、顧客のインタビューを通じた実際の行動パターンをデータ化・可視化し、どのステップで課題が生じているかを明確にすることが重要です。

クリティカルシンキング入門

「データ分解術で見つけた新たな視点」

情報を分解する重要性は? 情報を分解することによって、情報の解像度が向上します。データを加工するときには、以下の点に注意すると良いです。 まず、与えられた表をそのまま見るのではなく、全体を把握するために自分で欄を増やす工夫をしましょう。さらに、絶対値だけでなく相対値も見ることが重要です(比率に注目する)。数字はグラフにできると、その情報の威力が増します。「眼に仕事をさせる」ことがポイントです。 データの区切り方で何が変わる? データをどのように区切るかによって、解釈が変わってきます。刻み幅によって、分布の見え方が変わるため、どのような分け方が良いかをいくつか試行錯誤する習慣を身につけることが大切です。どのくらいの刻み幅にすれば良いかだけでなく、どのように区切ると意味を持つかを仮説として考えることが重要です。また、分解の際には多様な切り口を考えてみることが必要です。ある切り口では特徴的な傾向が見えなくても、別の切り口では見えることがあるため、複数の切り口で分解してみることが有益です。 まずは「全体」を定義することが重要です。 セミナー結果の詳細分析法は? セミナーや研修の参加者アンケートの結果を分析する際には、表面的な結果だけではなく、"when"、"who"、"how"など、多くの切り口から分解して内訳をしっかり確認します。2つ目、3つ目の傾向がないか意識しながらデータ分析を行うことが求められます。 業務報告はどう改善すべき? 月次の業務報告作成の際には、集計したデータをグラフ化し、表の状態では見えなかった傾向がないかを確認するようにします。データをどこで区切るか、どのように切ると意味を持つ切り方になるかを仮説立てて試してみることが大切です。 今年度のセミナー内容を企画・提案する際には、過去数年分のテーマと参加者アンケート結果を比較して、どのようなテーマがどの属性の参加者に反応が良いのかを分析します。その結果をもとに、今年度の企画案を作成します。また、業務報告を作成する際には、これまで毎月固定の項目の傾向分析・報告だけを行っていましたが、次月以降は新たな切り口での分析を1つ以上追加して報告する予定です。

戦略思考入門

部下も納得!目標設定の秘訣

会議で何が決まる? 多くの企業では、期初会議などの場で新しい施策や目標が掲げられることが多いですが、捨てる方針や優先順位を明確にする発表は稀です。この結果、部下が優先順位を把握できずに困惑することがあります。上司は客観的な視点やデータをもとに、明確な指示と評価基準を設定し、追跡評価を行う必要があります。 視点の根拠は? 客観的視点を提示すると以下のようになります: 数字の背景は? 1. **単位時間あたりの利益率** 販売活動に関する業務では分かりやすいですが、カスタマーサービス(CS)向上や開発業務では試算方法を考慮する必要があります。 2. **顧客(企業)の成長、将来性** 利益だけでなく、その業界や取り扱い製品の伸び率を判断材料にします。 3. **企業文化やキャラクター** 良好な企業文化を持つ顧客とは関係を継続しますが、そうでない場合は時間や精神的負担を考慮し、関係を見直す必要があります。 業務選定の理由は? 医療機器の取り扱い業務においても優先順位の検討が重要です。具体的には以下の場面で検討が求められます: 販売支援の必要は? 1. **販売支援** 臨床的なサポートが期待される装置プレゼンテーションやデモンストレーションは、営業推進部で完結できるような仕組みや教育を整備します。 学会支援の意義は? 2. **学術活動** 学会発表支援や実験サポートにおいては、顧客のキャラクターや将来性、そして企業としてのメリットを考慮し、優先順位を付けます。さらに、有償化を検討します。 説明方法はどうする? 3. **取扱説明** 製品装置が多様であるため、無差別曲線を利用してサービスとアプリケーションでバランスを取り、組織や役割を明確にします。これにより、社員の理解を得るとともに、顧客にも説明し納得してもらうことを目指します。例えば、取扱説明の影響が少ない装置には教育を行い、合格者にはバッチを提供するなどの工夫をしています。 効果はどのくらい? これらのプロセスを通じて、業務の効率化と顧客満足度の向上を図ります。

データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

クリティカルシンキング入門

成長を実感できる振り返りの重要性

学びの振り返りをどう活かす? これまで学んだ内容を振り返ってみると、まだまだ身についていないことが多いと感じました。また、ライブ授業で他の受講者たちが積極的に発言している姿を見て、自分も講座修了後に学んだことを振り返って、しっかりと実践していこうという意識が強まりました。 問いを意識する重要性とは? 人間は考えやすいことや考えたいことを考えてしまう癖があります。自分の考えをチェックするもう一人の自分を育てることが大切だと、Week1の講義で強く印象に残りました。しかし、まだ経験や思いつきで考えてしまうことが多いと感じています。また最近、部内でのある問題に対する認識がずれていることに気づきました。この経験から、問いの形で問題を特定し、問いを意識し続けること、そして問いを共有することの重要性を改めて感じました。 コミュニケーションをどう改善するか? 長い間同じ会社や部署にいるため、相手も自分と同じ認識を持っているだろうと決めつけて話してしまうことが多いです。これからは省略せず、相手の立場に立って話すよう心掛けたいと思います。また、思いつきや自分の経験から判断してしまうことが多いため、結論を出す前に本当にその結論で良いのかを深堀りすることも意識していきます。 プロセス共有の大切さとは? 部内で検討の機会が多いため、「イシューを問いの形で特定する」、「意識し続ける(途中でずれていないか確認する)」、「検討メンバーで共有する」というプロセスを実施したいです。業務分析をする際には、データをただの数字として見るのではなく、細かく分解して検討するように心掛けます。また、日々のメールやプレゼンはなんとなくで作らず、相手に読んでもらえるように、情報を探させない、明確に意図が伝わるよう意識して作成します。 継続的な学びの習慣をどう築く? まずは、本講座で学んだことを自分の言葉でまとめ、定期的に確認する習慣をつけることから始めたいと思います。学びを自分のものにするためには反復トレーニングが必要で、一時的に業務スピードが落ちるかもしれませんが、あきらめずに実践していきたいと思います。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

クリティカルシンキング入門

データ活用で業務が劇的改善!

目的を明確にするには? 自身が今までに上司より求められたことと照らし合わせ、以下が重要であると考えました。 まず、目的を明確にすることが大切です。何を伝えたいのか、相手にどう感じてもらいたいのかを最初に明確にすることで、文章の方向性がぶれにくくなります。 読者視点の重要性とは? 次に、シンプルでわかりやすい表現を心がけるべきです。複雑な言い回しや専門用語は避け、シンプルな言葉で書くことで、相手がすぐに理解できるようになります。 また、常に相手の視点を意識することが重要です。読者が誰なのかを考え、その人がどのような情報を求めているか、どのような表現が理解しやすいかを意識して書くことが求められます。 具体例の効果的な使い方は? さらに、具体例を用いることが効果的です。抽象的な表現よりも具体的な例やデータを用いることで、相手にイメージを持たせつつ説得力を高めることができます。 文章を整える方法とは? 文章の構成は論理的に整えることが必要です。前後の文や段落がしっかりとつながるように、論理的な流れを意識することで、読みやすさが向上します。 推敲・修正の重要性は? 最後に、推敲と修正を怠らないことが大切です。書いた後に何度も読み返し、不要な部分を削除したり、表現を改善することで、完成度の高い文章に仕上げることができます。 これまでは自分目線の文章を作って満足していましたが、相手目線を意識することで記入すべき内容が変わってくるのだと気付きました。また、その内容は人によっても変わります。そのため、いつ、誰に、どのような内容を伝えるのかということを繰り返し意識しながら文章を作っていく必要があります。 共感を得る文章の作り方は? とにかく相手に食いついてもらえる文章であることが大事です。それに至っていないのに、自分の意見などを細かく盛り込んだ資料を見せても意味がありません。まずは伝えたい内容に絞った文章を作成します。細かい内容や根拠は、相手が興味を持ってくれてから必要になるので、共感を得られて相手が質問してきた時に回答できるように準備をしておくことが大切です。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

データ・アナリティクス入門

目的と仮説で切り拓く未来

比較の本質って何? これまでのデータ分析において、私は「分析の本質は比較である」という点を十分に理解していなかったと感じています。適切なデータ選定ができず、チーム内で議論する際にも目的が曖昧であったため、集合データをそのまま使ってしまい、結果として具体的な結論に至らなかったケースが多くありました。 仮説は本当に必要? また、分析はあくまで目的を達成するための手段であるにもかかわらず、そのプロセスにおいて「仮説を立てる」という基本的なステップを十分に意識せずに進めてしまっていたことも大きな問題でした。 分析準備は万全? こうした経験から、まずデータ分析に入る前の準備段階を丁寧に実施することの重要性を痛感しました。具体的には、分析の目的を明確にし、仮説をしっかりと立てること。そして、分析の途中で常に最初の目的に沿って進んでいるかを確認する習慣が必要であると感じています。 依頼目的は明確? 業務の現場では、依頼元が提示する抽象的な目的に基づいて競合や市場の動向、新たな開発分野の抽出などが求められる中、漠然とした依頼内容のままで分析を進めてしまうケースがあります。その結果、得られたデータが本当に必要な情報を反映しているのか疑問が残る場合があり、依頼元側も求める結果が得られていないと感じることが少なくありません。 質向上の秘訣は何? 今回学んだ内容は、まさにこうした状況で活かすことができると考えています。相手が何を知りたいのか、抽象的な目的を具体的に落とし込み、既知の情報などを基に仮説を立てることにより、アウトプットの質を向上させられると実感しました。また、個人としてだけでなく、チーム全体で取り組む際には以下の点を共有し、実践していくことが重要です。 チーム内の確認はどう? まず、分析の目的を明確にし、チーム全体で統一した見解を持つこと。次に、分析前に十分な仮説を立てること、現状を正確に把握すること、分析対象のデータが適正かどうかを確認すること。そして、分析の途中で常に最初の目的に沿っているかどうかをチーム内で確認し合うことが大切だと考えています。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

データ・アナリティクス入門

定量データとロジックツリーで解決策を磨く方法

解決策を考える際の注意点は? 課題を与えられた際には、まずどのように解決するかに意識が向きがちです。その結果、【what】や【where】の考察が後回しになってしまうことがあります。この講義を通じて、現状と理想の姿とのギャップを定量的に把握する重要性を学びました。具体的な数値が示されているにもかかわらず、それを使わずに仮説を立て、解決策を考えていた自分に気づくことができ、とても良かったです。 新たな思考法は役立つのか? さらに、ロジックツリーの活用方法についても新たな知見を得ました。通常、条件を先に考え、その条件に合うアイデアを生み出そうとする方法を取ることが多いですが、具体的な打ち手を先に考え、その後条件に当てはまるものを選ぶアプローチが新鮮でした。このような思考法があると知り、非常に役立ちました。 理想と現状のギャップを埋めるには? 顧客との対話においても、理想の姿やあるべき姿の合意を得て、現状とのギャップを埋めていくことが重要です。【what】や【where】を考える前に、まずあるべき姿や望む姿を明確にする必要があります。採用活動においては、人材とのマッチングを図るために具体的な数値に落とし込むことが少ないですが、目標を見失わないように定量データでコンセンサスを取ることを忘れないようにしたいです。また、大きな目標の上にKPIとしての数値目標を立てることも重要だと感じました。 どのようにアイデアを整理する? さらに、用件定義を行った上で解決策を考える際に行き詰まった時には、先にロジックツリーを用いて要素を分解し、その後要件に当てはまるものを選ぶという方法も有効だと分かりました。 1. 顧客との会話の中で都度目標の確認を行う。 2. KPIを設定する。 3. 必ず現状とのギャップを考える。 4. ギャップの原因やボトルネックを調べるために定量データを活用する。 5. アイデア出しで行き詰まったら、ロジックツリーを使ってアイデアを並べ、要件に当てはまるものを選定する。 これらのポイントを念頭に置き、今後の業務に活かしていきたいと考えています。
AIコーチング導線バナー

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right