戦略思考入門

捨てる勇気が戦略を進化させる

戦略における「捨てる」とは? 今週は、戦略における「捨てる」ことについて学びました。実践課題を通じて、ROIを用いて優先順位を決定する判断軸が存在することを理解し、自分の1時間あたりの利益を意識して仕事に取り組むべきだと感じました。また、顧客の会社や市場の成長度合い、当社への貢献度など、さまざまな判断基準があることも改めて学びました。 「捨てる」ことで何が変わる? 「捨てる」ための意識として、いくつかのポイントを強調したいと思います。まず、捨てることで顧客の利便性が向上することがあります。また、昔からの惰性で行動しないことや、専門的なことは専門家に任せることも重要です。これらの意識を持つことで、効果的な戦略を立てることができるでしょう。 トレードオフをどう決断する? 戦略を立てていく中で、トレードオフが発生する場合があります。その際、何を「捨てる」か決断し、意思決定を行うことが必要です。私は営業部署に所属しているため、案件対応を進める際に、これらの判断基準を念頭に置いて工数を決めていきたいと思います。判断が難しい場合は、上司と相談しながら、判断の根拠となる材料(ROIや顧客の貢献度)をもとに決定していきます。 プロジェクトでの「捨てる」選択 現在携わっている新規プロジェクトでは、トレードオフが生じていないか分析中です。トレードオフ状態にある場合は、プロジェクトメンバーと共に何を「捨てる」かを決め、意思統一を図っていきます。業務においては、重要な判断基準をデータとして手元にまとめておくことが有用です。新しいプロジェクトを進める際にも、必要に応じて「捨てる」選択を行い、方向性をメンバーと共に決定していくことを意識するようにします。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

デザイン思考入門

実践で磨く創造のプロトタイプ

図面と場はなぜ違う? 自身の業務においてプロトタイプは、図面やCG、タイムライン、進行資料といったデータベースで存在しています。しかし、空間づくりや場づくりといった実際の形にする過程は容易ではありません。図面やCGは多くの人に見せ、説明し、フィードバックを得やすいのに対し、イベントや勉強会などの場づくりは、実際に進行を試みる必要があり、時間や場所、参加者の制約が大きなハードルとなります。 短縮実施はどう? こうした中で、短時間の部分的な実施や動画、音声による確認といった方法を取り入れることで、柔軟に対応する必要があると感じました。多くのフィードバックをもらうことでプロトタイプをブラッシュアップできると同時に、その場で迅速に修正を加えるスピードも重要だと認識しています。 実働視点はどう捉える? また、図面やCGによるプロトタイプはメタ認知的な視点に偏りがちで、実際に働く人々の目線や感じ方を捉えるのが難しいという課題があります。そこで、模型を作成し、カメラを使って目線を合わせる工夫が求められます。実際に進行を試みる方法は「アクティング」とも言え、図面やCGを元に働く人たちの視点を再現することで、より具体的な感覚や意見を引き出せるのではないかと考えました。 体験からは何得る? 結局、アイデアだけではなく、実際に触れ、観察し、体験できるプロトタイプが不可欠です。そして、そのフィードバックをどのように共感、課題の抽出、発想、試作に結びつけるかが重要であり、かける時間や労力の配分も検討すべき点です。さらに、得たいフィードバックに合わせて、まだ詰め切れていない部分を強調したプロトタイプを作成する方法も効果的だと捉えています。

データ・アナリティクス入門

効果的な仮説立案で施策展開が変わる

仮説立案の重要性とステップ 仮説を考える際のポイントとして、まずは複数の仮説を立てることが重要です。一つに決め打ちせず、複数案を考え、その中から絞り込むプロセスを取るべきです。また、仮説同士に網羅性を持たせるため、異なる切り口で仮説を立てることが求められます。この際、3Cや4Pといったフレームを使うことで、切り口を広げることができます。これらのフレームを定着できるように、繰り返し意識して使用することが重要です。 問題解決と結論の仮説分類 仮説はその目的に応じて、「問題解決の仮説」と「結論の仮説」に大きく分類されます。それぞれ、過去・現在・将来といった時間軸に応じて仮説の中身が変わります。仮説と検証はセットで行うことで、より説得力を持たせることができます。 効果的な施策展開への道 現在、施策展開が乱立している状況を整理し、ハンドリングできるようにしたいと考えています。より効果的かつ効率的な施策展開のためには、仮説を常に意識して立てることが必要です。現状では議論の中である程度のところで決め打ちになってしまっているように思います。より効果的かつ効率的な運営を行うために、問題解決のプロセスに沿った仮説立証を定着させ、日々の業務に意識的に取り入れることが重要です。 フレームワーク活用と効果検証 また、仮説を立てるためのフレームワークについても学び、問題や課題の提起を具体的な施策に関して行います。その際、都合の良い情報になっていないかに留意しながら、データを集めて施策の効果検証を行うことが求められます。効果検証の整理をするためにも、適切な仮説立てとその検証を通じて、施策展開をより効果的かつ効率的に進めていきたいと考えています。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

データ・アナリティクス入門

ロジックツリーで見える問題解決の新視点

問題の本質はどこ? 問題解決には2つの種類があります。1つは正しい状態に戻すための問題解決であり、もう1つは目標に到達するための問題解決です。これらの解決を図るためには、まず問題の所在を明確にし、具体的な問題箇所を特定することが必要です。自分が「これが原因・問題だろう」と考えていても、予期せぬ原因や見逃している問題が存在することがあります。これを防ぐためにロジックツリーを用いることが有効です。 影響はどう見える? また、原因や問題が業務や経営方針にどの程度の影響を及ぼしているのか、ライバルと比較して適切な条件になっているのか、全体の進行の中で重視すべき事象なのか、といった点も考慮に入れなければなりません。 説明は伝わる? 業務上、特定のスタッフに業務負荷が偏ってしまうといった問題を解決する際、原因をなんとなく感覚的に見つけ、「これが原因だろうからこうすれば良いだろう」と進めてきました。しかし、それを周囲に説明し納得してもらい、動いてもらうためには、今回学んだロジックツリーを活用することが効果的であると感じました。 戦略はどこに? 現在注目される訪日旅行において、どのエリアを強化するのか、どのような戦略を取るべきかを考える際、現状やこれまでの訪日旅行のトレンドや傾向についても考慮したいと考えます。 改善策は何だ? 業務改善においては、ロジックツリーを活用して、問題の本当の原因を他の管理職と共に追求します。その上で、人員を増やすべきか、業務フローそのものの効率化を図るべきかについて議論します。また、今期の方針として、訪日旅行に関するどのようなデータが必要かを調査し、その中から必要な情報を選別する予定です。

リーダーシップ・キャリアビジョン入門

リーダーシップとデータ活用で未来を拓く

リーダー姿勢はどう? リーダーの本質は、つき従う者が存在することであり、信頼がなければ従う者はいないという点にあります。したがって、リーダーは自ら行動を起こし、組織のあるべき姿勢をメンバーに示すことが重要です。また、目標の重要性をメンバーにしっかりと理解させる必要があります。 困難にどう向き合う? 目標達成の過程では、必ず困難や課題に直面します。その際に、リーダーが逃げたり、メンバーに責任を押し付けたりすると、信頼は得られません。メンバーは、実務能力だけでなく、困難や課題にしっかりと向き合う意識を持つことをリーダーの行動を通じて見ています。 CRMで何が変わる? 現在、マーケティング、戦略、商品企画業務に従事していますが、職場でのCRMデータ活用はまだ十分に浸透していません。そこで、CRMデータを活用したマーケティング戦略と商品企画を目標に掲げています。具体的な分析結果をもとに啓蒙活動を始め、メンバーにこの意義を共感してもらうことが重要です。自らの事例を分かち合い、部会などを通じて分析目的やデータの切り口を発表させることで、職場でのCRMデータ活用を普及させています。 以下のステップで活動を進めています: 1. 目標設定と部内での課題提起(実施済) 2. 自身の分析事例の明確化(実施済) 3. 他メンバーへの目標と取り組みたい内容の明確化(12月) 4. 他メンバーが実施した分析手法とその目的の明確化(12月から2月) 5. メンバーからの事例を集め、集合知として事例集を完成させる(3月) このプロセスを通じて、組織全体でCRMデータの活用を深め、効果的なマーケティング戦略を構築することを目指しています。

データ・アナリティクス入門

データ分析で見分ける成功の鍵

データ分析で比較はなぜ重要? データ分析の基本は「比較」であることを学びました。しかし、ただ単に比較すれば良いというわけではありません。分析の目的に応じて比較の軸が異なるため、その目的を明確にすることが重要です。さらに、データ分析の結果を報告する際には、見せ方を工夫することも大切です。比率を見たいのか、推移を見たいのかなど、定量データに応じた適切な見せ方を検討する必要があります。 飛行機の生存能力をどう改善? 動画の中で、飛行機の生存能力を上げるための改善点を考えるという課題がありました。初めは「欠損している部分」を改善するべきだと思いましたが、分析の目的を考えると、「欠損していない部分」を補強する方が生存能力が上がるという解説を見て納得しました。 業務でのデータ分析の課題とは? 日々の業務でも、お客様がデータ分析をしたいと言いつつ、現状の把握だけで終わってしまうケースが多々あります。そこで、データ分析の基本として、目的の明確化と比較の重要性を伝えていきたいと思います。たとえば、実績だけの数値を並べているケースでは、その数値が良いのか悪いのか判断できず、その後のアクションが不明瞭になっているお客様が多くいます。このような場合には、具体的な提案を行いたいです。 学びを実践するプロセスが大事? 学んだことを実践し、アウトプットすることで、その結果が良かったのか、改善の余地があるのかを言語化することも大切です。振り返りを必ず行い、学んだことを整理し自分の中に落とし込むプロセスを欠かさないようにします。グループワークや講義の中では、自分ごととして捉えることを意識し、積極的に考え、発言するように心がけています。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

デザイン思考入門

共感×問題定義で挑む成長術

共感はどう活かす? デザイン思考の5ステップを学ぶことで、全体の流れが体系的に理解できました。特に「共感」と「問題定義」の重要性が印象に残り、表面的な言葉だけでなく相手の背景や感情をくみ取って本質的な課題に迫るアプローチを再認識することができました。日々の業務において、現場の方の話を丁寧に聞く大切さを改めて実感する良い機会となりました。また、プロトタイプやテストを通じて改善を図る考え方も、提案活動に活かせると感じています。 現場の実感は何? 私の業務では、社内の各部門で発生する業務課題や非効率な業務フローのヒアリングを行い、データやデジタルの力を活用して改善提案をしています。今回の学びで得た「共感」「問題定義」「発想」「試作」「検証」の流れは、実際の現場支援プロセスに即していると感じました。特に、現場の方が本当に困っている点を深掘りする「共感」と、課題を的確に把握し整理する「問題定義」のステップは、今後のヒアリングや提案活動において意識していきたいポイントです。自分の仕事をより意味のあるものへと昇華させるヒントを得ることができました。 未来の改善はどう? 今後のヒアリング業務では、相手の状況や感情に寄り添い「共感」をしっかりと行い、話の中に潜むニーズや課題の背景を深く理解することを意識します。そして、「問題定義」の段階で課題を整理し、関係者と共通認識を持つことに注力します。必要に応じて、可視化やプロトタイプのアイディア出しも行い、改善の方向性を早期に示す工夫を取り入れます。小さな実践でも「試してみる」「やってみる」姿勢を大切にし、相手と共に課題を乗り越えていくパートナーとして活動していくことが今後の目標です。

「業務 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right