データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

デザイン思考入門

共感で再考する教育の現場

デザイン思考の現状は? 今回の講義を受け、自分が関わる教育現場や担当する科目、授業その他の業務全体において、「デザイン思考」が非常に重要であると実感しました。従来、教育現場では「教える」立場が『教えてあげる』という視点に陥りやすく、「これを理解してもらいたい」という思いがそのままその視点を強め、履修生というユーザーの視点が軽視されがちであると感じています。こうした状況を再点検し、ユーザーである履修生の立場に立つことの大切さを改めて感じました。 ユーザー共感は? また、今回の講義の中で「共感」のプロセスがいかに重要かを学び、まずは「観察」や「インタビュー」によってユーザーの真のニーズを把握することが不可欠だと理解しました。たとえ一人の意見であっても、その価値を認める姿勢は、これまで個人の主張に重きを置く教育現場において、必要な視点であると感じています。 学びの視点は? 今後は、従来の「教育者視点」から一歩踏み出し、「学びたい履修者視点」を重視した取り組みへとシフトし、他の教員との意見共有や確認を通して、一人ひとりの意見を大切にする姿勢を忘れずに進んでいきたいと考えています。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

戦略思考入門

明確なゴールが未来を拓く

自分の目的は何? 「目指す場所を明確にする」「やるべきこととやらないことを峻別する」「独自性(強み)を持つ」という基本概念は、よく耳にする内容ではありますが、自分の言葉でしっかりと認識し明文化することで、漠然と考えるのではなく、具体的かつ正確に思考できるようになると感じました。その結果、現場で次のアクションに確実につなげ、実際の仕事に生かせると考えています。 会議の進め方は? 打合せや会議の際、話が広がりすぎたり個人の都合が優先される状況でも、会議のゴールを明確にし、その達成のために参加者が何をすべきか、各自の強みをどう活かすべきかを整理することで、参加者全員が前向きに結論を受け入れられると実感しました。こうしたアプローチは、仕事の中で実践しやすいと感じています。 将来の戦略は? また、学習を進める中で、5年後や10年後の目標をより明確にし、性能面、コスト、環境規制への適合性などを踏まえた戦略や戦術を考える意欲が湧いています。今回身につけた知識を現職で活かしつつ、今後の学習を通じて将来の戦略立案に役立つスキル習得のためのマイルストーンを描けるよう努めたいと思います。

クリティカルシンキング入門

振り返りで磨く伝える力

長い文章で迷子になる? 文章が長くなると、主語と述語の関係が曖昧になり、伝えたい内容が相手にうまく伝わらないことがあります。センテンスを短くし、まず結論を述べた後、その理由を説明することで、説得力が増すことを改めて学びました。今後は、ロジックツリーの手法を使って、考えを可視化してから会話を進めたいと思います。 提案はどう伝える? 新たな企画を提案する際には、異業種の人々への伝え方が難しく感じられました。その原因を振り返ると、自分たちのやりたいことばかりに焦点を当て、相手のニーズを受け入れないまま話を進めてしまったことにあります。今後は、イシューを特定し、相手に理解してもらえる枠組みを考えた上で、納得してもらえるような会話を心がけます。 説得の根拠は十分? 相手のニーズを確認し、それを盛り込んだイシューを特定します。その理由付けの枠組みを考える際には、多方面からの視点を持ち、相手の考えが変わった場合にも柔軟に対応できる方法をいくつか準備しておきます。そして、こちらの主張も明確に伝え、落とし所を見つけ、なるべくこちらの意見が通るように、納得してもらえる根拠を説明していきます。

データ・アナリティクス入門

仮説検証で切り拓く成功の道

問題整理のポイントは? データ分析を進める上で、What、Where、Why、Howという問題解決のステップを行き来しながら整理することが非常に大切だと感じました。こうしたステップを意識することで、問題を深く理解し、的確な改善策を導き出すことができると思います。今までプロセスを細分化して考えることを怠っていた分、今後はその重要性を再認識し、確実に実行していきたいと考えています。 テスト検証の極意は? 特に、A/Bテストにおいては、条件を揃えて1要素ずつ検証することが成功の鍵であると改めて実感しました。これまでステップを踏んで分析を進めることはできていたものの、動きながら仮説を試し、データを収集する視点が不足していたと感じます。今後は、常に仮説検証とデータ収集を並行して進める必要があると認識しています。 実施環境をどう見る? また、実際に業務でA/Bテストを実施する際、特定の店舗でのみ実施していたため、環境要因に対する配慮が不足していたと感じました。今後は、各店舗ごとの環境差を考慮した上で、より均等な条件でテストを行い、信頼性の高いデータを得られるよう努めたいと思います。

戦略思考入門

迷い捨て、戦略で未来創る

戦略ツールはどう活かす? 今週の振り返りを通じて、戦略的思考を支える具体的なツールとして、フレームワークやメカニズムの存在を再認識しました。単に知識として習得するだけでなく、どのシーンで活用できるかを判断する経験とトレーニングが必要であると実感しています。今後は、各テーマに取り組む際に、どのフレームワークやメカニズムが適用できるかを意識的に考える習慣を身につけたいと考えています。 捨てる勇気は持てる? また、「捨てる決断」が自分にまだ十分できていないことに気づけたのは大きな学びでした。重要性を理解していても実際の行動に移せていない自分に向き合うきっかけとなりました。これからは、仕事やプライベートにおいても、優先順位を明確にした上で「捨てる」決断を実践することを意識していきたいと思います。 専門性はどう磨く? さらに、専門性の向上を今後の取り組みの柱にしようと決意しました。戦略的な考えをフレームワークに基づいて展開するだけではなく、その実現可能性に対する自信を持つことが実際の行動に結びつくと感じています。自分の場合、その自信は専門知識やスキルの向上にあると実感しています。

戦略思考入門

新たな視点!規模と習熟の発見

規模の経済ってどうなってる? 自社が製造業であるため、規模の経済性については理解していましたが、規模の不経済が発生する可能性については今回初めて知りました。また、営業においては「ある程度まで経験を積むと、それ以上の習熟効果が得られなくなる」という現象にも共通点を感じました。 標準化か習熟かどっち? 習熟効果を目指すのか、あるいはプロセスの標準化効果を狙うのか、状況に応じた柔軟な対応が必要だと実感しました。自部門における範囲の経済性については、これまで具体的なイメージが持てませんでしたが、動画で取り上げられた例のように、スキルやノウハウを有する人の異動や新規プロジェクトへの参加が、範囲の経済性に寄与することを理解できました。 不経済はどう捉える? 今回初めて知った規模の不経済を自社に当てはめ、実際に発生していないか、また万一発生する場合にはどのようなケースが考えられるかについても検討してみました。営業における習熟効果は経験によるところが大きいと感じるため、今後はメンバーにプラスの経験を積ませるよう努め、時には厳しい状況も経験させることで成長を促していきたいと考えています。

データ・アナリティクス入門

ロジックで磨く問題解決力

どうすれば問題を整理? 問題解決においては、まず「What⇒Where⇒Why⇒How」の順で分析を進めることが重要だと実感しています。特に、何が問題なのかを正確に把握するためには、問題の要素を十分に分解することが必要です。これまでは、要素分解が不十分であったと感じたため、今後はロジックツリーを活用し、問題解決に必要なポイントを漏れなく洗い出していきたいです。また、図を用いてMECEの観点から整理することで、問題の俯瞰と検索がしやすくなると感じています。 運用方法は本当に適切? 現在、チーム体制の転換期にある中で、従来の運用方法では今後問題が生じる可能性があると予想しています。実際に、これまでの運用を続ける場合にどのような問題が発生するか、その理由を今回のプロセスで分析できると確信しています。今後は、運用メニューや業務内容を特定の要素に分解し、MECEを意識しながら、問題の特定に取り組んでいきたいと考えています。 定性分析で何が見える? さらに、仕事において定性的な問題を分析する際、定量的な視点や切り口を増やす方法を学び、より具体的な分析に結びつけていければと思います。

アカウンティング入門

カフェ事例で読むB/Sの真実

B/SとP/Lってどう違う? B/S(貸借対照表)は、左側にお金の使い道(資産)、右側に調達方法(負債や純資産)を示し、会社のビジネスモデルの特徴や体調・健康状態を把握するための重要な指標です。一方、P/Lは会社の利益を示すものです。 比率で何が見える? 各項目の比率などを通して、事業コンセプトや提供価値に沿った内容になっているかどうかを考察できると感じました。特に、カフェビジネスの事例を参考に、経営者目線でお金の使い道を理解することができた点が印象的でした。 決算説明会はどう活かす? また、自社内の決算説明会などでB/Sの内容を詳しく説明される機会は多くないものの、自社のB/S遍歴(数年分)の見直しや、これまでの事業計画や実績との相関関係を確認することで、今後の事業展開の参考になると考えています。さらに、競合他社のB/Sと比較することも、経営の視点を養う上で有益です。 一歩ずつ理解できる? すべてを理解するのは難しくても、まずは一つの項目に注目し、「自社はこういう理由でここがこうなっている」という考え方を身につけ、P/LやB/Sから読み取る力を養いたいと感じました。

クリティカルシンキング入門

論理と客観で未来を切り拓く

考えは整理された? 論理的に考えるために、まずは具体的な作業内容が明確になったと感じています。自分の考えが偏っていることを認識し、客観的に見るもう一人の自分を育てること、そして考えを可視化し項目化してMECEの視点を意識すること、さらに具体と抽象を行き来することの重要性を実感しました。 プロジェクトの計画は? ① プロジェクトを進めるにあたっては、まずゴールをしっかり設定し、その達成に向けた計画を立てる必要があると感じました。自分の意見や考えを基に、どのように進めるべきかを整理し、進捗状況に応じて調整しながら計画的に進めることが求められます。 疑いは成長の鍵? ② また、業務におけるスキル面の課題整理や行動計画の作成・実行においても、書き出すことで三つの視点やMECEの観点を整理できる点が大いに役立ちました。時間をかけて考えるより、まずは先に進めながらも、立ち止まって整理し自分の出した答えに疑いを持つことで、現状を俯瞰的に捉える訓練となりました。 今後の進め方は? 以上の学びを通して、今後も論理的な思考を大切にし、より効果的に業務を進めていきたいと考えています。

データ・アナリティクス入門

SNS分析で得た新たな学びとテクニック

代表値の使い分けは必要? 代表値と散らばりの両方を意識する必要があることを学びました。代表値には単純平均、加重平均、幾何平均、中央値があり、特に平均値に3つの種類があるため、使い分けが重要です。 ビジュアル化の選び方は? また、ビジュアル化の重要性についても考えさせられました。どのようなグラフを使うかは分析したい内容に依存し、この点は経験から学んだつもりでしたが、実際には正確な知識が不足していたことを改めて認識しました。 各種データの分析に標準偏差を使おう これまでは単純平均しか算出したことがなかったため、今後は必要に応じて3種類の平均値を意識して使い分けるようにします。SNS投稿の反応を分析する際もばらつきを考慮せず、平均値だけで傾向を把握していましたが、標準偏差も用いることでより正確な把握・報告ができそうです。 例えば、SNS投稿に関する実績報告時には、エンゲージメント率などを平均だけでなく標準偏差も使用して分析しようと思います。投稿の種類や内容のカテゴリーによって差があるのかどうかも検討しつつ、ビジュアル化する際は適したグラフを選ぶことも重要だと考えます。

「今後」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right