データ・アナリティクス入門

受講生の挑戦史!仮説の軌跡

視野はどう広げる? 仮説を立てる際には、3Cや4Pといったフレームワークを活用することで、多角的な視点から物事を捉え、広い視野で考察することができます。まずは、現状の事象を一方的に決めつけず、可能な切り口をいくつも模索することが大切です。 データはどう活かす? その上で、仮説を裏付ける目的でデータを収集し、実際の状況と照らし合わせながら検証を進めます。これにより、問題点の所在が明確になり、その原因を把握することができ、より効果的な改善策に結びつけることが可能です。 戦略はどう選ぶ? また、商品ごとの価格政策や販売戦略においては、取引先ごとに異なるアプローチが必要となる場合もあります。そのような場合、十分な根拠をもとに仮説を立て、データをもって検証することで、精度の高い意思決定を迅速に行えるようになります。 どう多角的に考える? 日々の業務では、反射的な判断や行動に流されることなく、まずは多様な観点から事象を分析し、3Cや4Pの視点を取り入れて仮説を立てることが求められます。こうしたプロセスが、より論理的かつ具体的な改善策の検討につながるでしょう。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

クリティカルシンキング入門

はじめに明確なイシューを掲げよう

イシュー設定は必要? イシューを設定することの重要性を改めて学びました。これまで、直感に頼って課題を選んでしまったり、考えているうちに課題がずれてしまうことが多かったのですが、今回の演習で、課題がぶれてしまうと正しい回答にたどり着けないことを実感しました。そのため、最初に定めたイシューを言語化して書き留め、ぶれずに考えを進めることの大切さを感じています。 企画前の現状把握は? 新たな施策を企画する際は、まず現状を正しく分析し、イシューを明確に特定することが必要だと認識しました。現状分析の段階でイシューを曖昧なままアイデアを練るのではなく、しっかりと明文化することを徹底していきたいと思います。また、会議などで話が脱線する場面においても、最初に共通の認識を持ってから対話を始めることで、議論がうまく進むと感じました。 実践の基本は? これまでの経験を踏まえ、今後は以下の2点を実践していきます。まず、物事を考える際には最初にイシューを設定し、それに沿ってぶれずに思考を進めること。次に、情報収集の段階と課題を特定する段階を分けて考え、整理しながら進めることを徹底します。

リーダーシップ・キャリアビジョン入門

キャリア軸再確認で挑む成長

キャリアアンカーの重要性は? キャリアアンカーについて学んだ内容が印象に残っています。各人がどの事柄に重きを置くかは異なるため、モチベーションを高め維持するために必要な情報や条件について、しっかりとコミュニケーションを取ることが求められます。 内面の成長を促すのは? また、自身の内面を見つめ直すリーダーは、自然とリーダーシップを発揮しやすいと感じます。リーダーとして従業員のモチベーションを維持する役割だけでなく、自身のキャリアアンカーを再確認することで、より高い成長意欲が生まれると実感しました。私は純粋な挑戦心と自己決裁範囲の拡大を重要視しており、現状の職場では成長の余地が限られているため、職場外での活動にも目を向け、情報収集を行っています。 面談が生む気づきは? さらに、個別の面談を通してキャリアアンカーに関する意見を聞くことは大切です。限られた時間の中で、提供可能な条件や仕事から得られる経験を明確にし、それを公表して聞き取りを行うことで、各人のキャリアアンカーを大別できると考えています。仕事においては、目標の共有と進捗の管理が重要なポイントとなります。

データ・アナリティクス入門

データ分析の方法で成果が変わる理由

データ分析の仮説作りとは? 仮説を立てたうえでデータを収集し分析しなければ、分析結果を施策につなげることはできません。3C分析や4Pの視点を取り入れることで、仮説の軸を整え、仮説の幅を広げることが可能です。仮説をもとにどのデータを分析するかを検討しますが、データは「すでにあるもの」と「新たに取得するもの」に大別されます。 アクセスデータをどう活用する? 例えば、WEBのアクセスデータなどは、以前はあまり意識することなく仮説に基づいてデータを考慮するという手順で分析していました。しかし、分析に重きを置きすぎると、仮説の軸や幅について十分に考えることができません。まずは仮説を立てることに重点を置いて分析を進めたいと思います。 思考の幅を広げるには? アクセスデータを見る際には、仮説を検証する意識で分析を進めます。SNSやWEB広告の各指標も多くが既に用意されているため、つい既存のデータだけで考えがちですが、その結果として「良かった」「悪かった」という結論に終わりがちです。施策を行う前に仮説を立て、その仮説に対する結果という視点で分析・報告を行いたいと思います。

データ・アナリティクス入門

営業予測を刷新する新アプローチ

フレームワークの効果的な活用法とは? 今回の学びの中で、フレームワークのツールとしてロジックツリーとMECEが紹介されました。ロジックツリーは課題を細分化し、発見しやすくするための手法であり、MECEは問題をもれなく、ダブりなく整理するために必要な概念です。それぞれは様々な場面での分析に利用されますが、今回の復習を通じて今後の活用に向けた理解を深める機会となりました。 営業予測の新アプローチを試すには? 営業予測を行う際には、これまで直感に頼った予測を立ててしまいがちでしたが、今後は課題を分類し、分析した上で予測を立てることを心掛けたいと考えています。この新しいアプローチにより、異なる視点での分析が可能となり、より精度の高い営業予測が期待されます。 MECEを使った分析で得られるものは? これまでは同じ視点でデータを取り出して分析を行っていましたが、今後は課題を洗い直し、顧客の職種や規模、場所など、さまざまな角度からMECEを意識した分析を進めていきます。これにより、売り上げを伸ばすための施策のヒントを得られ、より具体的な情報収集と活用が期待されます。

データ・アナリティクス入門

明確な目的が生む比較の力

分析の本質は何だろう? 「分析の本質は比較である」という考え方に大変感銘を受けました。最初に何を明らかにしたいのかを明確にすることで、ある要素がある場合とない場合とを比較し、効果や違いを正しく捉えることができる点は、非常に実践的で応用の幅が広いと感じています。また、生存者バイアスによって見えなくなる情報への注意も、自分の視野を広げる大切な学びとなりました。分析においては、目に見えるデータだけでなく、見逃されがちな要素にも着目し、比較の対象を冷静に選ぶ姿勢が重要なのだと実感しました。 出発点は何だろう? これまで、製造現場におけるデータ収集や可視化の業務では、まずデータを集め加工することに注力していました。しかし今回の学びを通じて、分析の出発点は「何を明らかにしたいのか」「誰がどんな情報を求めているのか」を明確にすることにあると強く感じました。顧客や現場のニーズを正確に把握した上でデータを選定・加工することで、より有効な可視化と示唆が得られると考えます。今後は、単なるデータ処理に留まらず、目的に立ち返りながら業務に取り組む姿勢を一層意識していきたいと思います。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

戦略思考入門

プロジェクト成功へ向けた分析の旅

新プロジェクトに必要な分析手法は? 新しいプロジェクトの構築段階において、既存事業の来期戦略策定のために3C分析とSWOT分析を実施しようと考えています。プロジェクト開始当初に会話はしましたが、現段階で再度分析を行うことで、本格的な稼働に向けた準備を行いたいと考えています。 活用すべき戦略策定のステップは? また、既存事業の来期戦略については、SWOT分析を通じて外部環境の把握と自社サービスの内部環境の見直しを進めていきます。担当として、過去の定量データの調査が必要なため、分析のための情報収集を開始する予定です。 意思決定をどう高める? 具体的な行動計画としては以下の2点を挙げます: 1. 現在私が直面しているような時期や、来期の事業戦略を考えたりプロジェクト方針立案の際に、これまで学んできた分析手法を活用し、関与するメンバーの方向性を統一する。 2. 単に分析手法を行うだけでなく、「経営者の視座で考える」「ジレンマを過度に恐れない」「他社の意見をしっかり聞く」といった意識すべき事項を忘れずに持ち続けることで、効果的な意思決定を行っていきたい。

データ・アナリティクス入門

データ分析で業務改革を目指す学び

データ分析で重要なのは? 現在、実務の初歩的なデータ分析に触れる機会はあるものの、改めて分析手法を体系的に理解することができました。特に、データ分析においては課題設定と仮説が極めて重要です。ただ単に分析手法の知識を持つだけでなく、領域知識も必要となるため、日常業務では特に業務理解を深めることを意識していきたいと思います。 業務改革で何が求められる? 業務改革の根拠としてデータ分析を利用することが多いですが、第1週の学習を通じて、私が現在取り組んでいるのは、分析というよりもむしろ集計や可視化に近いことを理解しました。したがって、まず課題の設定や仮説に基づいてどのようなデータで比較するかを慎重に検討し、情報を収集することから始めるべきだと考えています。 領域知識を高めるには? また、課題設定や仮説を立てるための領域知識が不足しています。そこで、領域知識の向上を目指しながらも、分析を進めるためには周囲の協力を仰ぐことも重要だと感じています。データが複数のシステムにまたがって保存されているため、一度どのようなデータが存在するのかを整理することが重要です。

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right