戦略思考入門

直感と数字が導く新たな判断

なぜ断れないの? 頼まれたら断れない性格の影響か、自分が何かを捨てることが苦手だと改めて感じました。数値化して優先順位をつけると整理しやすいのは確かですが、勘や予感に基づいた優先順位付けによって、良い結果に結びついた経験も多々あったため、自分の判断基準を再定義する必要があると考えています。 優先順位の決め方は? ERP導入案件の商談では、顧客や競合に関する情報を幅広く収集し、適切に優先順位をつけることが可能だと感じています。また、各商談で作成する提案書は100ページを超えることが常ですが、必要な部分と無駄な部分を見極め、意図的に書かない部分を設けることで、重要なポイントがより際立つ提案書にしていきたいと思います。

データ・アナリティクス入門

数学感覚と実践が生む提案力

数学の感覚はどう? 今週の学習では、数学の問題に取り組むような感覚で、データを加工し、原因を定量的に特定する手法について学びました。すでにWebマーケティング戦略の一環として学習済みのAB分析に関しては、今回は新たな発見はありませんでした。 実践で効果はどう? 実際の業務においても、今回の実践演習のようなわかりやすいデータが存在すると、分析が楽しくなると同時に、説得力のある提案につながると感じました。これを機に、より具体的で定量的なデータの収集を心がけたいと思います。 動画学習の意図はどう? また、動画学習の内容は、データ分析というよりもマーケティング戦略に重点が置かれていると実感しました。

データ・アナリティクス入門

複数仮説が切り拓く新たな視点

複数仮説は有益? フレームワークを活用することで、仮説作成における2つのポイント―複数の仮説を立てること、そして仮説同士の網羅性を担保すること―が非常に分かりやすくなりました。いくつかの手法を身につけることで、思考が偏りがちなときに役立てられると実感しています。 決め打ちは疑問? また、仮説を決め打ちにしない姿勢の大切さも感じました。これまでは、一つの考えに固執してしまいがちでしたが、フレームワークを使うことで複数の視点から検証し、反論を考慮することが可能になりました。今あるデータだけでなく、必要な情報は自分で収集するという意識を持ち、より抜け漏れのない仮説作りを目指していきたいと思います。

マーケティング入門

実践から学ぶ仕組みづくりの秘話

効果的な仕組みは? マーケティングとは、顧客に商品を買っていただける仕組みを構築することを意味します。体系的に学ぶことで、自ら効果的な仕組みを提案できる力を身につけ、結果として増収効果の高い施策の策定を目指したいと考えています。 セグメントをどう見る? また、営業活動の中でお客様のセグメンテーションにも取り組んでいます。以前は日本において「在中国の日本人」というセグメントを行っていましたが、今後はさらに細かく分類することで、よりニーズに合った商品提供のための基盤を築きたいと思います。そのため、従来とは異なる視点を取り入れるべく、社内外のヒアリングを通じた情報収集に努めています。

戦略思考入門

内外を見極める!学びのヒント

外部と内部をどう見る? 演習問題では、外部環境、特に顧客に着目した分析に傾きがちでしたが、内部環境の分析も重要であると再認識しました。動画学習で触れられていた「バランスよく情報収集する」という考え方が、この点について大きな気づきとなりました。 目的はどう決める? また、業務の効率化や各種改善活動を進める中で、上位からの要望やグループメンバーの意見が具体性に欠ける場合があると感じています。そのため、まずは目的を明確にし、必要な情報を精査することが不可欠です。改善策については、外部環境の変化だけでなく、内部のシステムや環境の変化についてもしっかりと分析することが求められます。

データ・アナリティクス入門

顧客の本音、次の一手へ

顧客志向の意義は? 顧客志向の重要性を実感しました。単に実績を求めるのではなく、顧客が誰かに推奨したくなる視点が大変勉強になりました。特に、ウォンツから顕在的ニーズを抽出し、要因を深堀することで具体的な打ち手を考える方法を学べた点が印象的です。 新規事業の戦略は? また、現在新規事業に向けた施策を検討している中で、これまでの学びが活かせると感じています。市場の機会や脅威、自社の強みと弱みを把握するためには、全体像を捉える学びが欠かせないと考えています。今後は、ネット上での情報収集や他部署の方々からのアドバイスを参考にしながら、最も効果的な施策を見極めていきたいと思います。

データ・アナリティクス入門

仮説の罠を超える学び

仮説の固執はどう? これまでの経験から、仮説を立てる際に一方的に「決め打ち」してしまっていたことが反省点として浮かび上がりました。たとえば、部署としての方針を説明する資料作成時に、特定の仮説に固執し、その仮説に合わせたデータ収集に偏ってしまう傾向がありました。 多角的検証はどんな感じ? これからは、まず複数の視点からフレームワークを活用して仮説の網羅性を確認し、自分自身で異なる可能性を批判的に検証することを心がけたいと考えています。また、データ収集に際しては、どのように集計し、どのようなグラフや指標で示して分析を進めるかを意識することの重要性も再認識しました。

データ・アナリティクス入門

全体像から未来を創る学び

全体像をどう把握? これから新しい環境で活動するにあたり、まずはその全体像を俯瞰的に捉え、内外の状況を正確に理解することが大切だと感じています。現場では、どのようなデータが存在し、どの情報が不足しているのかを冷静に把握し、判断する必要があると考えます。 学びをどう生かす? また、何かを深く理解するためには、自ら進んで情報を収集する行動が欠かせません。市場の動向を知るため、様々な知識を学び、疑問を持ちながら意見や改善ポイントを見出していく姿勢を大事にしたいと思います。今後は、積極的に学ぶ姿勢を発揮し、学んだ内容を具体的な行動に活かしていく所存です。

戦略思考入門

差別化実践!6週間の挑戦

なぜ差別化が必要? 製造業で生き残るためには、単に自社製品の原価低減だけではなく、他社製品との違いを明確にする差別化が必要だと実感しました。目の前の自社だけに留まらず、業界全体を見渡す視点が重要です。 どう実践を進める? ナノ単科での6週間の学びを通じ、理解できている点とまだ十分に理解できていない点がはっきりと分かりました。今後は、担当している製品に当てはめた差別化の分析を実践し、まずは同業他社の情報収集から始める予定です。加えて、自社の戦略部門のメンバーとも分析結果について意見を交わし、さらなる改善を目指していきます。

データ・アナリティクス入門

多角的仮説で導く最適解への道

仮説をどう見極める? 私は、思い込みや決め打ちで仮説を立てるのではなく、複数の仮説を比較するためのデータを適切に収集することの重要性を学びました。各種フレームワークを活用することで、分析に説得力を持たせることができると考えています。 ITの課題解決は? また、ITを通じて顧客に提供する際には、不具合の原因調査や課題解決に対して様々な解決法が存在することが分かりました。そのため、フレームワークを用いて複数の仮説を網羅的に整理することで、その場に応じた最適な結論を導き出すことができると感じています。
AIコーチング導線バナー

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right