データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

仮説検証で切り拓く成功の道

問題整理のポイントは? データ分析を進める上で、What、Where、Why、Howという問題解決のステップを行き来しながら整理することが非常に大切だと感じました。こうしたステップを意識することで、問題を深く理解し、的確な改善策を導き出すことができると思います。今までプロセスを細分化して考えることを怠っていた分、今後はその重要性を再認識し、確実に実行していきたいと考えています。 テスト検証の極意は? 特に、A/Bテストにおいては、条件を揃えて1要素ずつ検証することが成功の鍵であると改めて実感しました。これまでステップを踏んで分析を進めることはできていたものの、動きながら仮説を試し、データを収集する視点が不足していたと感じます。今後は、常に仮説検証とデータ収集を並行して進める必要があると認識しています。 実施環境をどう見る? また、実際に業務でA/Bテストを実施する際、特定の店舗でのみ実施していたため、環境要因に対する配慮が不足していたと感じました。今後は、各店舗ごとの環境差を考慮した上で、より均等な条件でテストを行い、信頼性の高いデータを得られるよう努めたいと思います。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

クリティカルシンキング入門

柔軟な理由が生む伝わる力

伝わる文章って何が重要? 今週の講座では、「相手に伝わる文章を書くポイント」を学びました。日本語の正確な使い方や、文章評価、そして手順を踏むことの重要性については再確認できたものの、特に印象に残ったのは、状況や相手に応じて理由付けを変えることの大切さでした。これまで一つの正しい理由に頼る傾向があった私ですが、相手や場面に合わせて複数の理由を用意する柔軟さが必要だと気づいたのです。この発見は、単に文章を書く力だけでなく、自分の考えを整理して伝える能力そのものを向上させる貴重な学びとなりました。 複数の理由付けはなぜ効果的? 業務では資源価格の情報収集と分析を担当していますが、上役や関係者への説明時に、データだけではなく相手や状況に合わせた複数の理由付けが非常に有効であると実感しています。ふんわりとした印象や可能性に基づく理由付けも、場合によっては説得力を高めることに気づき、説明の幅を意識するようになりました。これからは、分析結果を整理して提示する際に、データに加え補足的な視点や相手の立場を考慮した複数の説明パターンを準備し、より多角的な情報提供を目指したいと考えています。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

データ・アナリティクス入門

受講生の挑戦史!仮説の軌跡

視野はどう広げる? 仮説を立てる際には、3Cや4Pといったフレームワークを活用することで、多角的な視点から物事を捉え、広い視野で考察することができます。まずは、現状の事象を一方的に決めつけず、可能な切り口をいくつも模索することが大切です。 データはどう活かす? その上で、仮説を裏付ける目的でデータを収集し、実際の状況と照らし合わせながら検証を進めます。これにより、問題点の所在が明確になり、その原因を把握することができ、より効果的な改善策に結びつけることが可能です。 戦略はどう選ぶ? また、商品ごとの価格政策や販売戦略においては、取引先ごとに異なるアプローチが必要となる場合もあります。そのような場合、十分な根拠をもとに仮説を立て、データをもって検証することで、精度の高い意思決定を迅速に行えるようになります。 どう多角的に考える? 日々の業務では、反射的な判断や行動に流されることなく、まずは多様な観点から事象を分析し、3Cや4Pの視点を取り入れて仮説を立てることが求められます。こうしたプロセスが、より論理的かつ具体的な改善策の検討につながるでしょう。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

クリティカルシンキング入門

はじめに明確なイシューを掲げよう

イシュー設定は必要? イシューを設定することの重要性を改めて学びました。これまで、直感に頼って課題を選んでしまったり、考えているうちに課題がずれてしまうことが多かったのですが、今回の演習で、課題がぶれてしまうと正しい回答にたどり着けないことを実感しました。そのため、最初に定めたイシューを言語化して書き留め、ぶれずに考えを進めることの大切さを感じています。 企画前の現状把握は? 新たな施策を企画する際は、まず現状を正しく分析し、イシューを明確に特定することが必要だと認識しました。現状分析の段階でイシューを曖昧なままアイデアを練るのではなく、しっかりと明文化することを徹底していきたいと思います。また、会議などで話が脱線する場面においても、最初に共通の認識を持ってから対話を始めることで、議論がうまく進むと感じました。 実践の基本は? これまでの経験を踏まえ、今後は以下の2点を実践していきます。まず、物事を考える際には最初にイシューを設定し、それに沿ってぶれずに思考を進めること。次に、情報収集の段階と課題を特定する段階を分けて考え、整理しながら進めることを徹底します。

リーダーシップ・キャリアビジョン入門

キャリア軸再確認で挑む成長

キャリアアンカーの重要性は? キャリアアンカーについて学んだ内容が印象に残っています。各人がどの事柄に重きを置くかは異なるため、モチベーションを高め維持するために必要な情報や条件について、しっかりとコミュニケーションを取ることが求められます。 内面の成長を促すのは? また、自身の内面を見つめ直すリーダーは、自然とリーダーシップを発揮しやすいと感じます。リーダーとして従業員のモチベーションを維持する役割だけでなく、自身のキャリアアンカーを再確認することで、より高い成長意欲が生まれると実感しました。私は純粋な挑戦心と自己決裁範囲の拡大を重要視しており、現状の職場では成長の余地が限られているため、職場外での活動にも目を向け、情報収集を行っています。 面談が生む気づきは? さらに、個別の面談を通してキャリアアンカーに関する意見を聞くことは大切です。限られた時間の中で、提供可能な条件や仕事から得られる経験を明確にし、それを公表して聞き取りを行うことで、各人のキャリアアンカーを大別できると考えています。仕事においては、目標の共有と進捗の管理が重要なポイントとなります。

データ・アナリティクス入門

データ分析の方法で成果が変わる理由

データ分析の仮説作りとは? 仮説を立てたうえでデータを収集し分析しなければ、分析結果を施策につなげることはできません。3C分析や4Pの視点を取り入れることで、仮説の軸を整え、仮説の幅を広げることが可能です。仮説をもとにどのデータを分析するかを検討しますが、データは「すでにあるもの」と「新たに取得するもの」に大別されます。 アクセスデータをどう活用する? 例えば、WEBのアクセスデータなどは、以前はあまり意識することなく仮説に基づいてデータを考慮するという手順で分析していました。しかし、分析に重きを置きすぎると、仮説の軸や幅について十分に考えることができません。まずは仮説を立てることに重点を置いて分析を進めたいと思います。 思考の幅を広げるには? アクセスデータを見る際には、仮説を検証する意識で分析を進めます。SNSやWEB広告の各指標も多くが既に用意されているため、つい既存のデータだけで考えがちですが、その結果として「良かった」「悪かった」という結論に終わりがちです。施策を行う前に仮説を立て、その仮説に対する結果という視点で分析・報告を行いたいと思います。

アカウンティング入門

数字で企業戦略を読み解く

P/Lの基本って? P/LやB/Sの基本的な知識を学び、そのつながりを理解することができました。P/Lにおいては、企業がどのように利益を上げ、どこに費用をかけているのかが明確になり、売上増加の仕組みが見えてきました。 B/Sは何がわかる? 一方、B/Sは資金の収集方法と使い道が示されており、企業の財務基盤の構造を理解することで、長期的な安定性についても分析することができると感じました。企業の売上構造や事業の仕組みは、財務諸表に色濃く反映されていることがわかりました。 未来はどう予測? 今回の学びを活かして、今後はさまざまな企業の動向を分析し、業界の未来の姿を考察していきたいと思います。同じ業界内でも企業ごとに異なる事業戦略が展開されていることから、財務諸表の変遷を通じて、今後伸びる事業が見えてくると考えています。 多角的視点の意義は? また、アカウンティングの観点だけでなく、マーケティングや経営戦略といった他の視点も取り入れ、多角的に企業を考察することが重要だと感じました。これからも幅広い知識を習得し、より深い分析ができるよう努めていきたいです。
AIコーチング導線バナー

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right