デザイン思考入門

共感プロセスで見えた本質

デザイン思考はどう働く? 私は、自社の業務効率や生産性を向上させるために、デザイン思考のアプローチを取り入れようとしています。施策を検討する際、共感は非常に重要なステップであり、実際、経験や知識のない分野でも観察やヒアリングを通じてエンドユーザーの立場から業務を理解することが、より適切な対策を生み出す基盤になると考えています。 急ぎすぎるリスクは何? ただし、私の事例では、エンドユーザーが既に理解している業務の振り返りにとどまってしまい、次の具体的な検討段階へ早く進んでしまう危険性を感じています。そこで、共感プロセスをしっかり進めるためには、エンドユーザー自身にも共感の重要性を認識してもらい、具体的なメリット(例えば、既存業務の棚卸しなど)を実感させる工夫が必要だと思いました。 なぜ事前準備が必要? また、観察やヒアリングを通じてユーザーの深層ニーズや課題を把握することは、デザイン思考の基盤を築くうえで欠かせないプロセスです。しかし、単に行動を追うだけであれば表面的な理解にとどまる危険があるため、事前の情報収集と明確な問いの設定が重要であると考えています。今後のコース受講を通じて、その下準備の進め方についてさらにヒントを得たいと思います。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

クリティカルシンキング入門

未来を切り拓く学びの瞬間

見逃しは何だった? ライブ授業で振り返りを行った結果、以前忘れていた点や十分に理解できていなかった部分に改めて気づくことができました。授業を通して、自己の認識の甘さを補い、理解の深まりを実感しています。 自分の立ち位置は? また、今週はゲイルに取り組む中で、過去と現在における自分の立ち位置や、これから実現したい方向性が具体的にイメージできるようになりました。これにより、今後の目標設定やキャリアに向けた準備がより明確になったと感じています。 同僚と何を伝える? さらに、これまでの授業で学んだ内容は、会社の同僚に伝えることで、現状の組織が抱える課題や今後の課題を一緒に考え、解決に向けた取り組みへとつなげています。自分自身の業務に対するフィードバックは、周囲やAIなどから取得し、現在の自分の立ち位置を理解した上で、必要な情報やスキルを補うためのPDCAサイクルを意識して回すよう努めています。 効果的な伝え方は? また、相手に正しく情報を伝えるため、相手の立場や理解度に合わせたコミュニケーションをとることが重要だと感じています。日々、さまざまなツールを活用しながら、最新情報の収集に努め、より効果的な伝達方法を模索しています。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

クリティカルシンキング入門

振り返りから学ぶ成長のヒント

振り返りはなぜ大切? 振り返りの重要性を強調する場面が多くあり、これが大事であると実感しました。特に今週は、これまでの学びを総合的に見直し、どのように実践に活かすかを整理する良い機会となりました。 目標と業務の問い? 個人の業績目標に関しては、目標設定時だけでなく、進捗中であってもその問いが正しいか再考する必要性を実感しています。また、ルーチン業務の改善においては、日々の業務が本質的に必要であるか、そして最善の方法を取っているかを常に考えることが大切だと感じました。 意見はどう発信? 加えて、社内プロジェクトにおいては、単にトップダウンの指示をこなすのではなく、自らも積極的に情報を収集し、企画や進め方において自分なりの意見を提供する姿勢が求められています。 計画通り進んでる? 業績については、隔週で自身で業績と進捗状況を確認し、当初の計画と一致しているか、そして現状でも本質的であるかを、欠けている視点がないかどうかとともにチェックすることが重要です。 ルーチンはどう管理? ルーチンに関しては、日々意識することが理想ですが、難しい場合は気になる点をメモし、月に一度、そのメモについて調査し解消を図るようにしています。

マーケティング入門

心に響く体験の新発見

どうして体験が大事? 商品単体の価値だけでなく、関連するポジティブな体験を伴うことで他社との差別化が図られると実感しました。接触時間が長くなるほど、商品やサービスへの理解が深まり、結果として選ばれやすく購買行動につながるメリットがあるのです。さらに、感情と結び付いた体験は唯一無二のものとなり愛着が生まれる一方、悪い体験が記憶に残ると、顧客が再び戻ってこなくなるリスクも孕んでいます。 魅力はどう伝わる? 一方、主力となる診療科は成熟した市場でトップシェアを誇るため、顧客に対していかに魅力的な体験を設計できるかがリード企業としての使命であると感じています。同じ体験の繰り返しを避けるために、常に顧客の情報を収集し、最新の動向を踏まえた新たなポジティブ体験の構築に努める必要があります。 次はどう進む? 直近では大規模な学会において、顧客体験をテーマにしたブースが企画されています。実際に顧客とのコミュニケーションを積極的に図りながら仮説検証を進め、来年度に向けた新たなポジティブ体験の設計を目指す方針です。また、新たな診療科においても、商品の持つ機能的価値のみならず情緒的な価値についても常に検証を行い、より良い体験提供に取り組んでいきます。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

データ・アナリティクス入門

実践!比較で開く分析の扉

分析本質はどう捉える? 「分析の本質は比較」というテーマから、これまで漠然と捉えていた「分析」が、実は「比較」を前提として成り立っていることを再認識しました。比較対象が存在しなければ、意味のある分析は行えないという考え方に気づかされました。 課題整理はできてる? 現状の課題として、収集したデータがそのままに放置され、分析に必要な比較対象が適切に選定されていない点、そして分析の目的が明確になっていない点が挙げられます。これらの課題を意識し、今後の業務改善に活かしていきたいと思います。 数値の変化はどうなってる? コミュニティ運営では、入会や退会の集計を実施していますが、リソースの問題から、十分な分析には至っていませんでした。しかし、年単位の集計により、昨年や一昨年と比較してどのような数値になっているのか、またその数値に影響している要因は何かといった点を把握できると実感しています。 改善策は何だろう? 今後は、分析の目的を明確にし、必要なデータ収集に努めるとともに、入会時および退会時のアンケート項目の見直しを実施します。そして、毎月の施策と入退会の関連性を紐付けることで、より実践的な分析を展開していきたいと考えています。

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right