データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

クリティカルシンキング入門

ナノ単科で見つけた未来のヒント

アイキャッチは有効? 【目を引くキャッチフレーズで印象づける】 資料作成や情報伝達において、まずは冒頭に目を引くアイキャッチを配置することが重要です。これにより、読む人の興味を引き、伝えたいポイントが一目で理解できる構成になります。 視覚表現は伝わる? グラフや図、文字の色、フォントといった視覚要素は、要点をパッと伝えるための有用なツールです。資料全体の構成や内容を整理し、何が一番伝えたいのかを明確に示すことで、相手に情報を探させない資料作成を実現できます。 グラフの使い方は? アンケート収集や実績報告、データを基にした考察の場面では、グラフを用途に合った形で活用することが求められます。色使いは控えめにしつつ、強調すべきポイントが際立つように工夫することが大切です。 文章の見直しは? また、資料や文章は提出前に客観的に見直し、伝えたい内容が確実に伝わるかどうかを確認することが必要です。読み手の視線がどの順序で情報を捉えるかを考慮し、論理的な構造と流れを意識した文章作成を心がけましょう。 強調方法は効果的? このように、シンプルで分かりやすい表現と、効果的な視覚的強調を組み合わせることで、資料の要点がすぐに把握できるコミュニケーションが実現します。

データ・アナリティクス入門

複眼で見る仮説の世界

仮説の重要性は? 学習前は、仮説を立てることに対して、恣意的または無意識に寄せたデータを収集してしまうのではないかという懸念がありました。しかし、今週の学習で、複数の仮説を立てることの重要性を理解できました。仮説はある程度の網羅性を持つべきであり、3Cや4Pといったフレームワークがその考え方を支えていることに納得しました。 仮説と行動の速さは? また、仮説を立てることが物事のスピードに直結するという新たな視点も得られました。これまで、仮説が誤っていた場合はすべてをやり直すゼロスタートになると思い込んでいたのは、仮説を決め打ちにして一つだけ持っていたからだと、自分の在り方から理解しました。 多様性と仮説の関係は? 担当しているダイバーシティ推進の取り組みにおいて、複数の仮説を活用することは、多様な在り方に対する効果的な施策の切り口が一つではないことと合致すると感じます。一方で、大きな方向性や目的の核がなければ、アイディアが散らばってしまうため、その点は常に意識しておきたいと思います。 検証の進め方はどう? 仮説の検証過程では、恣意的な判断を防ぐためにフレームワークに立ち返り、複数の仮説について必ず他者と対話し第三者の視点も取り入れるよう努めています。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

戦略思考入門

フレームワークで見つける新たな視点

フレーム活用の効果は? フレームワークを活用することで、漏れなく効率的に検討を進められることを再認識しました。特に、フレームワークを皆で習得することで、メンバー間で共通の言語を使って会話ができる点が大きな利点だと思います。以前は3CやSWOT分析、バリューチェーン分析などの基本的な分析をしないままに戦略を立てようとしていました。しかし、まずは自分自身で実践し、手を動かして考えることが必要だと感じました。 情報不足の理由は? 3CやSWOT分析を行うためには、業界や他社の情報がまだ不足していると感じているため、これから地道に情報を収集していきます。一方、バリューチェーン分析に関しては、自分の所属する部署に限定して分析するのも良いかもしれないと考えました。このフレームワークは、どこに人材と資金を投入すべきか判断し、経営陣からの合意を得る際に非常に有効だと実感しました。 実践から何学ぶ? 具体的なアクションとしては、まず3CとSWOT分析を試してみて、空白部分を明らかにし、見えていない点や情報不足の箇所を洗い出します。また、自チームのバリューチェーンを描いて、同僚や上司と共有し、フィードバックをもらいながらブラッシュアップしていきたいと考えています。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

アカウンティング入門

数字が描く事業価値の物語

事業価値はどう感じた? ライブ授業では、事業価値をまず自分で考え、その後にP/LやB/Sの数字や構成の仮説を立てるというアプローチを実践しました。数字を見る前に事業の本質を理解しようとすることで、数字に対する驚きが生まれ、理解が深まったと感じています。今後も、まず自分なりに事業価値や仮説を考える姿勢を大切にしていきたいと思います。 原価計算って理解できた? また、売上原価においては、販売に直接関係する支出には人件費も含まれるという考え方が印象的でした。これまで十分に理解していなかったため、今回の講座で新たな視点が得られたと実感しています。さらに、減価償却費が大きな割合を占める点についても、普段は忘れがちな部分ですが、その影響の大きさを改めて認識する機会となりました。 決算理解は深まった? 日々の業務や会議でP/LやB/Sに関連する用語が出る中、今回学んだことを踏まえて自分なりの意見を述べるよう努めています。自社の決算に関しても、単に数字を覚えるのではなく、重要なポイントをストーリーとして理解し、他者に説明できることを目指しています。決算時期には新聞記事を通して同業他社の業績についても理解を深めるよう、今回の知識を活かして情報収集に取り組んでいます。

戦略思考入門

取捨選択で磨く未来の軸

優先基準は何だろう? 今週のテーマは「取捨選択」であり、優先順位を上げるべきものや見送るべきものを判断するためには、情報収集と分析が不可欠であると実感しました。その上で、次に何を重視するかという軸を明確にすることも重要です。また、ビジネス環境や自社の状況は刻々と変わるため、定めた軸に沿って定期的に状況を見直し、ヘルスチェックを行いながら方針を更新する必要があると感じました。 AI進化の影響は? さらに、生成AIやAIエージェントの進化に伴い、自社事業への影響が大きくなっている現状を踏まえると、リソースの配分や断念すべき部分の判断を迅速に行う必要があります。その上で、部下への指示や壁打ちの場面でもこれらのツールを効果的に活用できると感じました。世間のブームや期待感に流されることなく、冷静な情報収集を基に自部署の方向性を見定めることが重要です。 現状の課題は何? 現状では、自部署の課題に注目しすぎて、モグラ叩き的に個別の対策を講じている状況です。そこで、周囲の環境や社内の状況を改めて整理し、どの事業に注力すべきかを明確にすることが求められます。また、慣例的に続けている効果や効率が低い業務を見直し、効率化や中止の判断を行うべきだと考えています。

戦略思考入門

学んだフレームワークで未来を切り拓く

範囲の経済性を理解するには? 今週は、規模の経済、習熟効果、範囲の経済性、ネットワークの経済性について学びました。特に範囲の経済性は、その適用範囲が非常に広いことに驚かされました。このようなフレームワークを利用することで、問題の本質を見極め、どう解決に導くかを常に考えることが重要だと感じました。一般的に「これは当然だ」と思われていることも、「本当にそうなのか?」と疑問を持つ姿勢が大切だと理解しました。 習熟効果と組織の連携 私たちの会社は基本的に販売を行っているため、実務においては習熟効果と範囲の経済性を組織として活用していきたいと考えています。特に範囲の経済性は人事異動や社員評価の場面でも役立つと期待できます。また、市場の声を本社に伝達し商品開発に生かすため、顧客ニーズの本質を見極め、それに基づいて規模の経済性が発揮できる分野や商品についての提案をしていく必要があります。 情報収集と考察力を鍛えるには? さらに、「本当にそうなのか?」と問い続けながら、本質を見極める習慣を付けていきます。そして、情報収集にあたっては、一つの情報源に頼らず、なるべく一次情報に触れ、何が正しいのか、また世の中がどの方向に進んでいるのかを考えていく考察力を養っていきます。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

データ・アナリティクス入門

仮説とデータで進む成長の一歩

データ分析の意義は? データ分析そのものが目的ではなく、What・Where・Why・Howの各ステップに沿って、イシューの設定、問題の特定、原因の分析、そして解決策の構築まで進めることの重要性を学びました。 課題解決の要点は? また、課題解決とは現状のマイナス面を正常に近づけるだけでなく、将来のありたい姿に向けた戦略を立てることも含まれている点が新鮮な発見でした。 なぜ提案が浅く? 内部監査の担当として実務を行う中で、課題の特定までは進むことができても、真の原因分析が困難で、改善提案が表面的になってしまうことが多いと感じています。今後は、原因をより深く掘り下げ、具体的な改善策を提案できるように努めたいと思います。また、提起する課題が現状の問題解消を目指すものなのか、将来のビジョンに向けたものなのかを明確に区別して提案できる力を養うことも目標にしています。 仮説検証のプロセスは? What・Where・Why・Howの各場面で仮説を立て、その仮説をデータ分析により検証するプロセスを確実に実行したいと考えています。データ分析だけに留まらず、その他の情報も収集しながら、より深い原因分析と効果的な改善提案ができるよう、引き続き努めていきたいです。

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right