データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

デザイン思考入門

デザイン思考が導く学び

他者意見の学びは? これまでのグループワークを通して、さまざまな方の意見に触れる機会がありました。今回のテストでは、また違った視点からのフィードバックを得ることができ、他者の視点がとても貴重であると実感しました。 サービス企画の一歩は? 普段の業務では、新しいサービスを企画する際に、プレマーケティングとして信頼関係のあるお客様に紹介し、フィードバックを収集する機会を設けています。このプロセスは、まさにデザイン思考のテストフェーズそのものだと感じました。 デザイン思考の活用は? また、これまで深く意識していなかったデザイン思考が、実際には日々の業務に広く活用されていることに気づかされました。今後は、サービス開発だけでなく、社内での合意形成やプロジェクト推進など、その他の業務にも積極的に応用していきたいと思います。

マーケティング入門

マーケティング戦略再構築の道筋

顧客要望の収集が鍵? 商品販売を行う会社の強みを考える際、顧客の要望を収集し分析することから始めることが重要です。会社と顧客の両者が抱える問題点を深く考察し、その結果、新たなビジネスの可能性を見出すことができます。 方針は再構築すべき? 私たちの新規事業は開始から1年が経過しましたが、まだ明確な製品販売方針が決まっていません。また、顧客ターゲットも曖昧なままです。この状況ではマーケティング戦略を確立できませんので、方針を再構築する必要があると強く感じています。 新旧事業の優先順位は? 今後の方向性として、新規事業販売の促進か、既存企業サポートの強化のどちらを優先するかを計画し、意見を交換しながら明確な道筋を立てていきたいと考えています。両者の必要性を認識しつつ、優先順位をつけて取組むべきです。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

クリティカルシンキング入門

意図が伝わる資料作りの極意

どう伝えるのが正しい? SEとしてお客様向けの資料を作成する際、認識の齟齬が生じないよう合意を得る機会が多いことから、今回学んだ手法は大いに役立つと感じています。相手に伝えたい内容を正しく表現するため、適切なグラフやメッセージを用いて丁寧に資料を作成することで、自身の業務をより効率的に遂行できるでしょう。 情報整理はできていますか? 資料作成にあたっては、まず何を伝えたいのかを明確にし、必要な情報を十分に収集することが重要です。その上で、作成した資料が伝えたい内容と見せ方とで整合性が取れているかを念入りに確認する必要があります。決してなんとなく資料を作成せず、意図をしっかりと盛り込んだ丁寧な作業を心掛けることが求められます。

データ・アナリティクス入門

全体像から未来を創る学び

全体像をどう把握? これから新しい環境で活動するにあたり、まずはその全体像を俯瞰的に捉え、内外の状況を正確に理解することが大切だと感じています。現場では、どのようなデータが存在し、どの情報が不足しているのかを冷静に把握し、判断する必要があると考えます。 学びをどう生かす? また、何かを深く理解するためには、自ら進んで情報を収集する行動が欠かせません。市場の動向を知るため、様々な知識を学び、疑問を持ちながら意見や改善ポイントを見出していく姿勢を大事にしたいと思います。今後は、積極的に学ぶ姿勢を発揮し、学んだ内容を具体的な行動に活かしていく所存です。

「収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right