クリティカルシンキング入門

未来を紡ぐ挑戦と学びの記録

現状課題の見極め方は? マクドナルドのケースを通じて、市場、競合、自社の各視点から現状の課題を捉え、どこを伸ばすべきかを明確な意思で取り組むことの大切さを学びました。また、KPIを適切に分解し、成長に必要な指標を特定、その課題に対する施策を実施することで、困難な状況も乗り越えられると実感しました。 成長の鍵はどこに? 私は教育業界でプロダクトマネージャーとして活動しており、現在はグロービス学び放題のプロダクトに取り組んでいます。今、企業として成長するための指標を検討するKPIツリーの作成に邁進しており、市場、競合、自社の観点から課題を明確にして、今後半年から1年度の中でどの部分に注力すべきかを見極め、重点的に強化していく必要があると考えています。 どんな覚悟で進む? プロダクトマネージャーとして施策のロードマップ作成に関与する中で、確固たる意思をもって取り組んでいく決意です。

戦略思考入門

差別化で自社の未来を切り拓く!

競争優位性の重要性とは? 自社の経営戦略を考える上で、競争優位性を維持するためには差別化が重要であると学びました。特に自社の強みを網羅的に分析するには、VRIO分析が効果的であることを理解しました。 VRIO分析の役割は? また、VRIO分析は来年度以降の事業戦略や営業戦略を検討するうえで非常に有益なツールであると認識しました。顧客との会話で、なぜその商材が必要なのかを深掘りしてヒアリングする際にも、差別化という視点を持つことで、新たな視点から情報を整理できると思いました。 差別化要素の再整理計画 今後は、まず2月中にVRIO分析を実施し、差別化要素を再整理したいと思います。その後、足りないケーパビリティを補うための活動を実践します。さらに、差別化要素の持続的可能性を向上させるために、日本人だけでなくローカルスタッフを巻き込み、要素維持が可能な環境を整備したいと考えています。

データ・アナリティクス入門

仮説で未来を描く学びの一歩

仮説検討はどう進む? 幅広い視野に基づいて複数の仮説を立てることが問題解決につながると理解しました。検討の幅を広げるために、3Cや4Pといったフレームワークを活用し、意図を持ったデータ収集を行う重要性を再認識することができました。 市場の未来をどう読む? また、停滞気味の既存事業にブレイクスルーをもたらすため、将来の市場状況に基づいた仮説をもとに自社があるべき姿を描き、そこに至る戦略や戦術を検討する意義を感じました。この視点は、スタッフ個々の目標設定やKPIの策定にも活かせると考えています。 業績見通しはどう考える? さらに、自部門の過去の業績推移と今後10年間の見通しを基にして、停滞領域の立て直しや注力ポイントの整理を実施し、次年度の部門目標の設定につなげる必要があると感じました。この1年を次の5年、10年のための第一歩とするため、仮説に基づいた変化を実践していきたいです。

データ・アナリティクス入門

比較で解く原因の奥義

原因をどのように特定? 問題の原因を特定するためには、まずプロセスに分解し、そのプロセスごとに原因であるという仮説を立て検証する必要があると学びました。特に、条件を同じにして比較対象の要素をひとつだけ変更するA/Bテストの手法は、原因検証に非常に有効であると理解しました。この「分析とは比較である」という本学習の原則は、派生していっても常にその根本に忠実でなければならないと感じました。 多角的な検証の鍵は? また、問題の原因を直感で捉えるのではなく、What、Where、Why、Howの4つのステップで明確に切り分けることで、決め打ちにせず多角的な検討が可能になると実感しました。これにより、他者への仮説説明もしやすくなると同時に、A/Bテストを実施する際にもどの要素を置き換えるかを明確にしてトライアンドエラーのプロセスを進めることができ、より納得のいく検証が行えると感じました。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

デザイン思考入門

ルールに共感、未来への一歩

研修で共感の秘訣は? 私の担当業務では、ルールや運用の新規導入や見直し、そして研修の実施といった機会が多く、いずれもデザイン思考の考え方を活用できると感じます。実際に、研修の準備過程で過去に実施したアンケートや現状の課題分析に基づきテーマを設定し、段階的にコンテンツを作成しながら上司や部門メンバーに確認を重ねるというプロセスは、デザイン思考の共感やフィードバックの重要性を再認識させました。 他部門との連携は? 一方で、ルールや運用の新規導入においては、研修と同じ手法を十分に活かせていない面があり、今後は社内の他部門の立場に立って内容を検討する意識を持ちたいと考えています。まずは、通常業務の中で他部門とのコミュニケーションを機会として捉え、相談や監査の際にさりげなく意見を聞くことで情報収集を進めていければと思います。

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

「検討 × 実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right