クリティカルシンキング入門

数字が描く学びの軌跡

どうして可視化する? グラフなどを用いた「可視化」を意識することで、一次データをより細かく分け、隠れた傾向を発見することが可能になります。数字を味方につけることが、データの真実を浮き彫りにする第一歩です。 データ切り口の意味は? また、データを意味のある切り口で分けることの重要性も指摘されています。複数の視点からデータを検討し、活用することで、分け方一つで導かれる結論が変わる可能性を理解する必要があります。 見た目だけで判断? さらに、データの分解に際しては、結論を急がず、ぱっと見の傾向が必ずしも全体を示しているわけではないということに注意が必要です。ロジカルシンキングの基本として、MECE(漏れなくダブりなく)を意識し、無駄のない切り口で丁寧に分析することが求められます。 分解のコツは何? 具体例として、商品ごとの顧客層を分析する際には、年齢、性別、職業、購入時の時間帯や曜日など、さまざまな観点から分解を試みることが有効です。ただし、複数の切り口を用いる際も、ひと目での判断によって誤った解釈をしてしまわないよう、十分に検証する姿勢が大切です。

クリティカルシンキング入門

問いから始める!企画成功の秘訣

問いの目的は何ですか? 問いを発すること、問いを立て続けること、そしてそれを共有すること。この3つを業務において実践することが重要だと考えています。単に問いを発するだけでは、途中で迷子になってしまう可能性があるため、問いを立て続けなければなりません。そして、アウトプットすることで問いが適切か確認し、共有することが重要であると理解しました。 企画目的はどう決める? 私は、グループ会社に情報を発信する企画業務において、この「問い」を活用できると考えています。企画を始める際には、まず立てる目的が重要です。私はこの目的を「問い」を活用して立てたいと考えています。企画の方向性やゴールを上司とすり合わせる際に役立つと感じています。 ゴール設定はどうする? また、任されている企画についても、どこにゴールや目的を設定して進めるかを決める際に、このアプローチを活用します。設定したゴールや目的を納得してもらえるように説明できるよう、まずは自身で「問い」から始め、問いを立て続け、自分自身で納得できる問いと答えを求めています。それができたら、次はそれを共有するというアプローチをとる予定です。

データ・アナリティクス入門

プロセス分解で見つける問題解決のヒント

原因を見極めるには? ビジネスにおいて、問題の「正しい」原因を特定することはほぼ不可能と言えます。様々な要因が複雑に絡み合っているため、正解を見つけるのは難しいものの、「こんな方向性で問題に取り組めばよいかもしれない」という目途は立つこともあります。問題の原因を明らかにする方法としては、プロセスに分解するアプローチが有効です。 クリック率不足の理由は? 特にWEB手続きを推進する業務では、プロセスで分けてクリック率やコンバージョン率を見ていく考え方がすぐに役立ちそうです。クリック率が低い箇所には、どのように誘導を行うかを検討する必要があります。また、手続き完了率が低い箇所については、説明の文言がわかりにくいのか、コールセンターに電話したいと思われる要因があるのかなど、問題の原因を深掘りする必要があります。 ABテストで改善は? これらのプロセスで分解して得られた情報を基に、クリック率やコンバージョン率が低い部分にはABテストを行い、より良い施策を立てます。さらに、その結果を活用して、データに基づく意思決定を行ったり、他者を説得する材料とすることが重要です。

マーケティング入門

顧客の痛みを解消する分析力の重要性

インサイトとペインポイントの重要性とは? ニーズはポジティブな表現であり、さらに良くしたいという欲求もありますが、我慢が可能です。一方で、顧客のインサイトにはネガティブな要素が多く、損失や痛みの解決に繋がるものであれば、需要が高いと言えます。特に、ペインポイントというすぐにでも解決したい事柄に対する解決の重要性を学びました。 明確な区分が生む提案力 ウオンツ、ニーズ、インサイト、ペインポイントを明確に区分して、提案・分析を行うことが大切です。今回、ネガティブな事柄の解決が顧客にとって重要であるという点に納得できたので、この考え方をしっかりと理解し、深い分析に繋げていきたいと思います。顧客調査をしても、基礎知識が曖昧だとズレが生じるため、効果のある事柄に時間を充てられるよう努めたいです。 新規事業提案に必要な習慣は? 将来的には新規事業の提案ができるようになることを目指し、常に考える習慣をつけることが大切です。必要な時に具体的に文言化できるよう具体的なインサイトやペインポイントに繋げるために、調査力と納得感、自分事として考え、アウトプットする習慣を身につけていきます。

クリティカルシンキング入門

数字が語る真実と見えない可能性

数字分解で何が見える? 数字を分解することで、今まで見えなかったものが見えてくることに改めて感動しました。しかし、正しくデータを分析するためには、多くの項目を分解することが重要です。たとえ何も見えなかったとしても、それ自体が「見えなかった」という情報を得られる点が印象に残りました。 グラフで何が見える? また、数字をグラフなどで可視化することで、視覚的に理解できることの重要性を再認識しました。 業務分析の深さは? 私は現在、業務の取り組み状況を分析し、弱点を教育する部門に所属しています。分解できる数字は限られていますが、その中で複合的に分解を繰り返し、表面的な分析にとどまらないよう心掛けています。これにより、真の課題を明らかにし、教育の内容や方針を考察できます。 教育方針の決め方は? 2025年度の教育方針を考えるにあたって、まずは12月までに大枠を検討します。さらに、詳細な教育方針や内容については、対象層に分けてチーム内でよく検討し、1月中旬までに考えます。その後、上司の意見を取り入れてブラッシュアップし、最終的には3月初めに発信できるよう進めていきます。

データ・アナリティクス入門

問題解決の仮説でイベント成功へ挑戦

仮説の分類はどう? 仮説には、結論の仮説と問題解決の仮説という2つの重要な分類があります。結論の仮説は、ある論点に対する仮の答えを示し、一方で問題解決の仮説は、具体的な問題解決を促進するものです。これらの仮説を考えることで、私たちは「What(何が問題なのか?)」「Where(問題の所在)」「Why(原因追及)」「How(対策)」といった観点から問題を整理し、検証を進めることが可能になります。 仮説の意義を考える? 仮説の意義としては、まず検証するマインドを向上させることで説得力を高めることが挙げられます。また、関心や問題意識を高めることで、スピードアップと行動の精度向上にも寄与します。 参加者不足の原因は? 最近、学生向けイベントを開催した際に、当初の想定よりも参加者が集まらなかったという状況が発生しました。そこで、3W1Hを用いて具体的な問題解決の仮説を立て、どこに問題があったのかを明らかにしたいと考えています。今後のイベントでは、何が問題でどこに問題があるのかを具体化し、それに対する仮説を基に検証を重ねることで、より良い結果を目指したいと考えています。

戦略思考入門

3Cとバリューチェーンで見えた新視点

分析手法はどう活かす? 3C分析やSWOT分析は、これまで漠然と使用していたものの、3Cは「市場」「顧客」「自社」の順番で解析することが重要だと学びました。自社については、たこつぼ化が進んでいる部分があるため、こうした分析を行う際には、問題に直面することが多く、ネガティブになりがちです。そのため、ポジティブな視点を持つことが重要であると感じました。 視点転換で何が見える? また、自身の所属する業界が特殊であるため、バリューチェーン分析は適用しにくいと考えていましたが、見方を変えることで新たな可能性が見えてきました。具体的には、製品が使われる顧客のフローを細分化し、異なる属性に分類することで、それぞれでの分析が可能となることに気づかされました。 戦略資料はどう作る? さらに、フレームワークを活用したプレゼン資料の作成に取り組むことで、他者の理解度の違いを確認できました。そこから得られた反応を基に、組織の戦略方針を策定することができ、来年の戦略作成のための判断材料としました。特に、バリューチェーン分析を咀嚼しつつ、それを資料作成に活かすことが大切だと感じました。

デザイン思考入門

実体験で見える本当の価値

Zoomでは何が伝わらない? プロトタイプを発表した際、Zoomを用いた発表では実際に体感してもらうことが難しかったと感じました。たとえば、バックパックは実際に人が背負って使うものであり、実物を体験しながらその感想を伝えることが、より良いフィードバックにつながるのではないかと思います。 自ら試す意義は? また、体感することの重要性は、他の事例にも応用可能だと感じました。私が行政の職員として携わっている電子行政手続きにおいても、まずは手続きのプロトタイプを作成し、自分で実際に操作してみることが必要です。そして、同僚だけでなく、初めて利用する市民にもテストしてもらうことで、多角的なフィードバックを得ることができると考えます。 実践的テストはどう進む? 具体的には、まず自らツールを用いて手続きを作成し、そのテストを実施します。次に、同じ部署や他部署の職員によるテストを経て、最終的に実際に行政手続きを利用する市民にテストを実施してもらう流れが理想的です。実際、窓口部署でこれまで多くの行政手続きを作り上げた経験から、実践的なテストは十分に可能だと確信しています。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

データ・アナリティクス入門

受講生の挑戦史!仮説の軌跡

視野はどう広げる? 仮説を立てる際には、3Cや4Pといったフレームワークを活用することで、多角的な視点から物事を捉え、広い視野で考察することができます。まずは、現状の事象を一方的に決めつけず、可能な切り口をいくつも模索することが大切です。 データはどう活かす? その上で、仮説を裏付ける目的でデータを収集し、実際の状況と照らし合わせながら検証を進めます。これにより、問題点の所在が明確になり、その原因を把握することができ、より効果的な改善策に結びつけることが可能です。 戦略はどう選ぶ? また、商品ごとの価格政策や販売戦略においては、取引先ごとに異なるアプローチが必要となる場合もあります。そのような場合、十分な根拠をもとに仮説を立て、データをもって検証することで、精度の高い意思決定を迅速に行えるようになります。 どう多角的に考える? 日々の業務では、反射的な判断や行動に流されることなく、まずは多様な観点から事象を分析し、3Cや4Pの視点を取り入れて仮説を立てることが求められます。こうしたプロセスが、より論理的かつ具体的な改善策の検討につながるでしょう。

データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値はどう選ぶ? 分析を進める上で、仮説思考は非常に重要です。まずは、比較する際に代表値を決める必要があります。一般的には平均値を用いますが、データの特性に応じて加重平均や幾何平均を用いる場合もあります。特に成長率などを算出する場合は、幾何平均が適しています。また、外れ値の影響を避けるため、外れ値が存在する場合は中央値を代表値として採用します。 データばらつきはどう見る? 次に、データの比較では分布(ばらつき)も注視し、標準偏差を算出して分析します。標準偏差の値が小さいとデータ間のばらつきが少なく、大きいとばらつきが大きいことを示します。さらに、データの関係性を把握しやすくするために、ビジュアル化を活用することが効果的です。現在のデータの割合を示すだけでなく、平均値や標準偏差を算出し、これらの指標を比較に活用することで、より精度の高い分析が可能となります。 外れ値はどう確認? また、分析に入る前にはROWデータをしっかり確認し、外れ値が存在するかどうかを把握することが重要です。これにより、どの代表値を使用すべきか判断し、適切な分析手法を選定することができます。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right