データ・アナリティクス入門

論理とフレームワークで拓く未来

フレームワーク活用は? 課題に対して仮説を立てる際、4Pや3Cなどのフレームワークを活用することで、これまでの漠然としたアプローチから、より効率的かつ効果的な方法へと進化できることを実感しました。従来の方法と比べ、論理的に整理された仮説構築が可能になり、今後の取り組みに大きな期待を持っています。 客観データで見直す? また、仮説思考においては、反論を排除せずに客観的なデータ収集を行い、都合の良い解釈にとらわれないことが重要だと学びました。仮説が間違っている可能性を認め、検証に基づいた見直しを行う姿勢が、正確な結論に繋がると感じています。 問題解決の切り口は? 今後は、問題解決に向けて複数の仮説を立てる際、フレームワークを活用しながら様々な切り口で検討していきたいと思います。これまで何となく仮説を立てていた点を改め、より具体的かつ体系的なアプローチを心掛けるつもりです。 進行中の分析は? 現在進行中のデータ分析に関しても、今回の学びを活かし、もう一度仮説を立て直して検証を行います。日々の業務において常に仮説と検証のプロセスを意識し、フレームワークの活用に習熟することで、より確かな成果を目指していきます。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

クリティカルシンキング入門

イシューを特定するノート習慣の効果

イシューって何? イシューとは、「今答えを出すべき問い」を指します。イシューを特定する際に重要なポイントは、「問いの形にすること(例:●●するために、何をすべきか?)」、具体的に考えること、そして、そのイシューを押さえ続けることです。これにより、考えが進む中でぶれないようにすることが可能です。 問いをどう形にすべき? 私は問題提起の際に、これらのポイントを十分に意識できていなかったと感じています。特に、問いの形に変換することができていませんでした。今後は、問いの形でイシューを定義するように心掛けたいと思います。その他の二つのポイントについては、特に意識せずとも自然に押さえて考えを進められていたので、このまま継続して意識していきます。 解像度を上げるには? 解像度が低い物事を考える際には、まずイシューを特定することから始めたいと考えています。具体的な方法としては、急にスライドや文章を書き始めるのではなく、まずノートにピラミッドストラクチャーを描いてイシューを特定する習慣をつけます。そして、そのイシューが本当に適切かを再考し、他に重要なイシューがないかも考えながら、思考を深めていくようにしたいと思います。

戦略思考入門

数値での判断で変わる未来

数値で判断すべき? 意思決定をする際には、何かを捨てることが必要です。定性的に判断すると、顧客との関係性や歴史、背景などにより、判断が鈍ることがあります。そこで、数値を用いて定量的に判断し、感情に左右されないようにする検証が求められます。 指標はどう設定? 結果が出る前に、成功と失敗、継続と終了の指標を設定することは、感情的な判断でロスを増やすことを防ぐ手助けとなると感じました。実践においても、数値を基に判断しないと、歴史や背景から意思決定にゆがみが生じる可能性があると感じています。そのため、さまざまな角度から数値を確認し、安易に判断しない姿勢を保つことが大切です。 引き算は効果的? 基本的に積み上げ式の足し算で運用されることが多いですが、あえて引き算を行い、顧客への伝わりやすさを意識するべきです。ターゲットに何を伝えるべきかを考慮した上で、捨てることを決定します。 判断基準は整ってる? 捨てる際には、以下の点を確認します。①本来の方向性は何か?②ブレークスルーとなる案はないか?(一石二鳥の案)③現状は中途半端ではないか?④トレードオフが発生していないか?これらを検討し、捨てることを意思決定します。

アカウンティング入門

会社の健康診断:経営状態を読む視点

経営状態評価のポイントは? 会社の経営状態を見るための視点として、まず倒産の可能性について考えるとき、固定資産や流動負債に対する純資産の比率が重要です。また、減価償却の仕組みについても理解が必要です。資産はまず記載され、その後使用年数に応じて価値が減少し、その減少分が減価償却費としてPLに計上されます。 経理報告を理解する手順とは? 本社や海外拠点の経理報告を理解するための手順は以下の通りです。まず、自社のBS・PLの表記を理解することが重要です。それが理解できたら、経営会議や取締役会の経理報告で不明点がないようにする。最終的には、各社の財務諸表の裏にある背景を自分で説明できるようにします。 月次報告への注目点は? さらに、各社の月次報告には注意を払い、経営状態の違いを理解しましょう。特に製造業であるため、工場や生産拠点の減価償却方法を実際の施設に基づいて考えることが求められます。この点で他社との違いも理解しておくと良いです。重要な会議での財務報告を聞き直し、分からない箇所には仮説を立てて質問することが効果的です。 以上のステップを踏むことで、経理報告の理解が進み、適切な質問や分析ができるようになります。

マーケティング入門

受講生が感じた成長の瞬間

イノベーションって何が大切? イノベーションの普及には、比較優位性、適合性、わかりやすさ、使用可能性、可視性の5つの要件が求められます。製品やサービスの売れ行きは、顧客が抱くイメージに大きく左右されるため、ネーミングや宣伝は、顧客に理解しやすいものにする必要があります。こうした点から、顧客の心理を正確に捉えることが重要だと言えます。 顧客ニーズはどう捉える? 一方で、差別化の過程においては、競合他社の動向に気を取られすぎると、本来の顧客ニーズを見失う危険性があります。常に顧客に目を向け、顧客の期待に沿った商品づくりを心掛けることが大切です。 IT提案はどう評価する? 自社のITソリューションの提案を上記の普及要件に照らして考えると、まず比較優位性を示すために、新しい技術やアーキテクチャを採用し、従来システムと比べて優れている点を強調することが求められます。次に、適合性の観点からは、顧客の現行の運用に大きな変更を加えることなく、作業効率などの負担を軽減する提案を実施する必要があります。また、わかりやすさについては、全ての要素を網羅的に説明するのではなく、顧客にとって効果が高い点を中心に伝えることが効果的です。

データ・アナリティクス入門

ばらつきが拓く学びの扉

仮説設定の重要性は? 今回の講座では、データをただ眺めるのではなく、仮説を立てることの大切さを学びました。単純な平均値だけでなく、重みを考慮した加重平均やデータのばらつきを確認することで、ファクトを正しく把握する手法が身についたと感じています。 統計の意味をどう捉える? これまでは加重平均や標準偏差といった言葉を聞くだけで、その意味を十分に理解できていませんでした。しかし、今回の講座を通して、実際にばらつきを見る体験ができたことで、データの変動の重要性を実感することができました。 販売実績はどう理解? また、プロダクトごとの販売実績推移を分析する際には、属性別やレンジ別の分布を見ることで、どの層に受け入れられているのかを明確にし、施策の検討につなげることが可能であると感じました。分布のばらつきをしっかり確認することで、単なる傾向だけでなく、他の要因の影響も把握する助けになると気づかされました。 顧客分析に納得する? さらに、これまでプロダクト別の顧客分析では、平均値や中央値に頼ることが多かったのですが、今後はばらつきの数値化を取り入れ、日々や月ごとの実績をより一層可視化していく必要性を感じました。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

データ・アナリティクス入門

予測に挑む!データの秘密

予測の意義は何か? グラフを見る前に予測を立てる大切さが非常に印象に残りました。自分の予測と実際のデータとの差異を意識すると、「なぜこんなギャップがあるのだろう」という疑問が自然に湧き、分析を深堀りするうえで効果的であると感じました。予測と実績を比較するアプローチは、次にどのデータを詳しく見るべきかという方向性を明確にする上でも有用です。 平均値の限界は? 従来、総量を人数で割って1人あたりの平均値を算出し、能率を評価していましたが、詳細に見るとその平均値だけではばらつきを十分に捉えられないことが分かりました。実際に細部まで分析すると、能率には大きな差異が存在していたため、平均値だけに頼るのは疑問が残ります。そこで、中央値を算出することで、平均値では見逃しがちな偏りを補完する方法を試してみようと思います。 中央値の有効性は? また、標準偏差を用いて平均値からのばらつきを把握する手法もありますが、場合によっては中央値と比較するだけで十分な情報が得られる可能性もあります。今後は、業務の能率評価において、平均値のみならず中央値の使用意義を周知し、従来の考え方から新たな視点に変えていくことが重要だと感じています。

戦略思考入門

業務効率化の秘訣:「捨てる」技術とは?

数字は信頼できる? ビジネスにおいて、「捨てる」という判断を下すことは難しい。しかしながら、時間は有限であり、全てのことに対応することは不可能であるため、何を継続し、何を捨てるかを見極めるためには、より深く考えることが必要だと感じる。その際、感覚に頼らず、数値的な根拠に基づいて判断することが重要であり、他者を説得する場面でも役立つだろう。私は、こうした数値的根拠をもとに「捨てる」技術を身につけたいと考えている。 不要業務は見直す? また、業務においては、かつては重要だったが時代の変化とともに不要になったものも存在すると考えている。業務の合理化や効率化を進めるためにも、不必要な業務がないかを見直す必要がある。そして、業務の目的を再確認し、適切な判断を行いたいと思う。 目的と順番は? 具体的には、業務を一つずつ振り返り、その目的を考えることが大切だ。目的が不明瞭なものについては、過去からの慣習として続いている可能性があるため、「捨てる」ことを検討する。また、業務を可能な限り数値的根拠で示し、それをもとに優先順位をつけることで、採算性の低いものについては勇気を持って捨てるという決断を行うべきである。

アカウンティング入門

貸借対照表で読む企業の健康診断

貸借対照表の意義は? 貸借対照表(B/S)は、ある時点における企業の財政状態を示す重要な資料です。貸借対照表は、負債と純資産(集めたお金)の合計と資産(何に使ったか)が常にバランスしているという原理に基づいています。資産と負債は、流動性(現金化のしやすさ)を示す流動と固定に分けられ、純資産の比率からは企業の安定性を把握できます。これにより、企業の健康状態、つまり財政的に健全な状態か否かを判断する手がかりとなります。 数値変動をどう見る? また、過去の数値と比較することで、どの項目が変化しているかを把握し、財政状態の大枠をイメージすることが可能です。損益計算書(PL)を参照すれば、対象期間内の売上や損益の変動の背景と、財政状態の変化との関連を紐づけることができます。さらに、他社との比較を行うことで、目標とすべき数値や特徴を明確にし、企業が掲げるコンセプトや中期戦略との整合性も確認することが重要です。 健康判断の限界は? ただし、売上が順調に伸びている企業と横ばいの企業では、同じ項目であっても借入金の性質や意味合いが大きく異なるため、貸借対照表だけで企業の健康状態を完全に判断することには限界があるといえます。

データ・アナリティクス入門

相手の心を読む学びの軌跡

相手の意図をどう把握? 報告を求める相手の意図や背景を正確に把握することは、適切なフィードバックや判断を行う上で不可欠です。相手が求める情報や要求の真意を丁寧に確認することで、誤解を防ぎ、必要な情報を正確に得ることができます。 どの視点を取り入れる? また、分析を行う際には、一方的な見方に偏らず、複数の意見や視点を取り入れることが重要です。そうすることで、客観性が向上し、信頼性のある判断が可能になります。結果として、最終的な報告内容も幅広い視野に基づいたものとなり、さまざまな関係者が納得できる結論に導くことができると考えられます。 学びをどう活かす? 今週学んだ「相手の意図や背景の正確な把握」と「多角的な視点の取り入れ」は、クライアント対応やプロジェクト管理に大いに活かすことができます。特に、クライアントの要件定義やプロジェクトの進捗報告の際には、相手の真意を丁寧にヒアリングすることで、期待値のズレを防ぎ、信頼関係の構築につながります。また、チーム内の意思決定においても、メンバーやステークホルダーの多様な意見を取り入れ、客観的な分析を行うことで、より精度の高い提案や解決策を提示できると期待できます。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right