データ・アナリティクス入門

データ分析で学び得た具体的な手法とは?

分析の心得から具体例へ これまでは主に分析の心得に関するマインドセットを学んできましたが、今週からは具体的な分析手法についての講義が始まりました。平均値が極端な数字(はずれ値)によって大きくぶれる可能性を知っていたものの、中央値を具体的に説明できる計算式が非常に参考になりました。 データビジュアライゼーションの活用法 現在、データビジュアライゼーションに取り組んでいるため、代表値と分布をうまく使って視覚的に「伝わる」図を作りたいと思っています。そのため、標準偏差と分布の使い分けも重要です。どの要素の数値を組み合わせるかという「切り口」が非常に重要だと感じています。 定性的と定量的の融合をどう図る? さらに、アウトプットの質と量が重要であるため、あらゆるデータに対して「分析できないか」という視点を常に意識しています。仕事上、定性的な感覚を重視していますが、そこにデータなどの定量的な裏付けを加えることが大切だと感じています。数値情報の取得が可能かどうかがネックになることが多いというのが、私の経験上の課題です。

クリティカルシンキング入門

視野を広げた新しいアイデアの生み出し方

思考を広げるために必要な視点は? 適切な方法で適切なレベルまで考えること。考えには偏りが生じること。これら3つの「視」を意識して物事を考えること。この3点を取り入れることで、普段の思考が広がり、より深い探究に繋がると感じました。 提案時に大切な3つの「視」とは? 新しいことの企画や提案をする際、特に3つの「視」を意識し、広く深く考えることが重要です。そうすることで、より具体的で多くの可能性を見つけることができます。また、判断を求められる時に、あらゆることを想定して未来を見据えた舵取りができるようになるでしょう。 新しいアイデアを活かすためにどうする? 新しいアイデアが浮かんだときには、3つの「視」を意識して思考を巡らせ、それに伴うデータなども適切に肉付けします。この際、自分の都合に偏らず、客観的に事実と結びつけることを心がけます。 客観的な判断のためにはどう分析する? 判断を求められた時も同様に、自分や自部署の都合にとらわれず、客観的に物事を分析し、未来を見据えた判断を下せるよう努めます。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

マーケティング入門

ペインとゲインで変わる!売上促進の新戦略

顧客ニーズの捉え方は? 顧客の真のニーズを捉える具体的な方法を学びましたが、それにはコストや手間がかかるデプスインタビューのような方法も含まれます。したがって、状況に応じて多様な手法を用意しておくことが重要であると認識しました。 ペインとゲインの重要性を考える これまで、自社商品のニーズについて考える機会は多くありましたが、ペインポイントについて考えることはあまりありませんでした。商品が抱えるペインポイントと、提供する価値であるゲインポイントを言語化することで、新しい販売施策のアイデアが生まれる可能性があります。また、それは広告や宣伝においても、新たな視点から消費者に訴求するメッセージを出せるようになるだろうと感じました。 次のステップは何にする? 今後のアクションとして、自社商品のペインポイントとゲインポイントをすべて書き出し、部署のメンバーからフィードバックをもらって完成させていきます。そのアウトプットを基に、最低でも一つの販売施策のアイディアを考え、具体化するための行動を始めるつもりです。

戦略思考入門

ターゲット明確で差別戦略

顧客ターゲットはどう? 現状を整理することの重要性を学び、差別化を考える上でまず注力すべき顧客ターゲット層を明確にする必要性を再認識しました。ターゲットがはっきりすれば、その次に業界内外の競合他社を見極める視点を持つことが大切だと感じました。 戦略は継続できる? その上で、顧客が何を求めているか、自社の差別化戦略がそのニーズを満たすことができるか、またその戦略が継続的に提供可能か、さらには他社が簡単に模倣できないかを検討する必要があると理解しました。 実務でどう活かす? これらの学びを実務における自社サービスの差別化戦略に活かすべく、今提示されている戦略が本当に最適かどうかを改めて考えるきっかけになりました。顧客ニーズの充足や継続的な提供については一定の成果が感じられますが、他社が容易に真似できないかという点には疑問が残ります。 戦略の再考はどう? そこで、まずは自社の差別化戦略について上長と議論を重ねながら、時代の流れに対応し、競合他社も踏まえた戦略の再考に着手したいと考えています。

データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

アカウンティング入門

経営指標を活用した成功戦略構築法

売上と利益、見極め方は? 売上高、売上原価、営業利益の構造について、単に売上高が高いというだけでは経営状況を正確に判断するのは難しいと考えています。同様に、売上原価をただ低くするだけでは必ずしも売り上げが伸びるわけではありません。企業の経営戦略と資源配分を意識した仕組みをいかに考えるかが重要だと思います。 競合と比較、どう分析する? 競合企業の構造を理解するためには、複数の企業を横並びで比較し、背景にある状況を仮説を立てながら組み立てることに取り組んでいきたいと考えています。また、異業種を参照し、自企業との比較を行うことで、何が高コストの原因となっているかを特定することが可能です。これにより、より精度の高い分析が可能になると思います。 自動車業界の魅力は? 例えば、自動車メーカーの比較を行う予定です。各企業がどの領域に注力しているのかを分析することで、売上高、原価、営業利益の構造を理解したいと考えています。特に、本業以外の取り組みによる差別化要素があるかどうかも確認したいと思っています。

マーケティング入門

多角的学びで経営に挑戦

提案はどう説得する? マーケティングプランを加えた提案は、納得感を高めると実感しています。さらに、ファイナンスやアカウンティングなどで全体の状況を網羅することで、意思決定者の立場からの提案が可能になると感じました。 データは十分かな? マーケティングは顧客重視のため、定量化が難しい面があります。そのため、データの収集と分析力を向上させる経験を積む機会を大切にしていきたいと思います。 業務提案はどう見る? 新規業務提案にもこの考えを活かし、将来的な起業も視野に入れた上で、短期と長期の仕組み作りを重視します。大手の事例だけでなく、中小企業の成功例や失敗例にも学ぶために、書籍や動画サービスを通じて継続的に情報を取り入れる習慣を続けていきます。 書籍の読み方は? また、購入した書籍は全て読むのではなく、目次やダイジェストを参考にして本質を見極め、必要な部分を深く読み込むように工夫します。グロービス終了後も、時間を有効に活用して学習を継続し、部署内でのアウトプットの機会を通じて知識の定着を目指します。

リーダーシップ・キャリアビジョン入門

エンパワメントで成果を引き出すコツ

相手の考えはどう? エンパワメントにおいては、相手の仕事の進め方に対する考えを質問を通じて理解することが必要だと感じました。目標設定においても、目標を実行する本人が納得感を持てるようにすることが重要であり、達成基準が明確になるよう具体性を持たせることが求められます。 認識合わせはどう? これまでのエンパワメントでは、一方的に指示をしてしまい、後に相手との認識の違いを感じることがありました。今後は、普段から任せる仕事について、相手と認識をしっかりと揃えることを心掛けたいと思います。目標設定の際には、本人が参加できるよう問いかけを通じて促し、本人が実行可能な内容であるかを十分に考慮するようにしていきます。 やる気、どう引き出す? 日常の仕事の場面では、問いかけを通じて相手がどのように仕事の進め方を考えているのかを理解し、適切な説明ができるように努めたいと思います。目標設定においても、本人が参加し納得感を持てるように働きかけ、その結果として本人のモチベーションを高められるようにしたいと考えています。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right