データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

アカウンティング入門

経営指標を使いこなす力を磨く

ケーススタディで何を学んだか? 実際のケーススタディを通じて、P/Lの各項目である営業利益、経常利益、そして当期純利益の増減を比較し、「仮説を立てて検証する」方法を学びました。例えば、「売上高が増えているが売上総利益が減っている理由」として、売上原価の増加という事実を確認し、その原因を推測するプロセスがとても理解しやすかったです。 P/Lを読む際の重要ポイントは? また、P/Lを読む際に重要なポイントも学びました。まず、大きな数字である売上高、営業利益、経常利益、当期純利益を押さえることです。次に、分析においては、比較・対比を通じて傾向の変化や大きな相違点を見つけることが大切です。 どのように過去のP/Lを活用する? 具体的には、自社の過去のP/Lの推移を分析して結果を確認し、今後の予測を立ててみることが重要です。中長期計画を考える際に、これらの分析結果や予測を参考にすることができます。また、同業他社や興味のある会社、業界のP/Lを確認し、好調・不調の推移やその原因を予測することも有益です。 具体的なアクションは何か? 私が取り組むべき具体的アクションとしては、自社のここ数年のP/Lの推移を確認し、今期の予測値について増減の理由を仮説することが挙げられます。同業他社の公開されているP/Lと自社を比較することも重要です。さらに、関連する書籍に掲載されている数社のP/Lを確認し、読み取れることをまとめていきたいと考えています。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

データ・アナリティクス入門

データ分析をDX推進の鍵にする方法

フレームワークをどう活用する? what-where-why-howのフレームワークで考えることが非常に印象に残りました。これを会社でよく言われるPDCAサイクルに当てはめて考えてみました。P&Cの部分はwhat-where-why-howに、D&Aの部分は施策と解決策の実行に相当します。 仮説思考の真価は? 特に仮説思考はwhere→why→howの部分に適用できると思います。仮説と結論をセットで考えることで、無秩序な分析を防ぎ、限られた時間と資源で施策を考える際に有効だと感じました。 更に、単なるデータ集計とデータ分析は異なるという点についても再認識しました。 データ分析をどう実践する? 私は現在、メーカーの物流子会社で働いており、様々なシステムから日々多くのデータが蓄積されています。しかし、DXを推進すると言いつつも事なかれ主義が根強く、なかなか進展しないのが現状です。今回学んだwhat-where-why-howの流れでデータを分析し、グラフ化して社内で共有することで、的を絞った改善策の検討に役立てることができると思います。 目標達成に向けた分析とは? 具体的には、何を達成したいのかを明確にし、日々蓄積されるデータから目的に合ったデータを選定して分析し、情報として活用します。その結果を「わかりやすく伝える」ことを念頭に置き、周囲に共有して活動に巻き込み、活動の方向性を決める役割を担いたいと考えています。

データ・アナリティクス入門

仮説で切り拓く学びの軌跡

仮説の基本的な意味は? 仮説とは、ある論点に対する一時的な答えを意味します。仮説を立てることで、説得力が向上したり、日々の課題に対する意識が高まったり、業務のスピードアップにもつながります。仮説には、結論に向けたものと、問題解決のための「どこで」「なぜ」「どうやって」といったステップに基づくものがあります。また、時間の経過により仮説の内容が変化することも考えられます。 仮説検証はどう進む? 仮説を構築する際には、まず複数の仮説を立て、各仮説が網羅的であるかを確認することが重要です。思いつきや直感、単一の数字だけで決めつけず、様々な切り口やフレームワーク(たとえば4Pなど)を用いて検証することが求められます。さらに、必要なデータが何か、どこにあるかを探りながら、証明可能なデータやアンケート、インタビューなどを通じて仮説を補強することも一つの手段です。 過去経験はどう活かす? これまでの経験や目の前の数値だけに頼る傾向がありましたが、初めに様々な可能性を洗い出しておくことで、全体のスピードアップや説得力が大幅に向上することを実感しました。また、3Cや4Pといったフレームワークは、実際の業務でどのような視点で分析を進めるべきかを検討する上で有効であると理解できました。調査依頼を受けた際には、目的に応じた適切な指標を考え、複数の仮説を立てることで、分析の軸を明確にし、必要なデータの所在を把握していくことが大切だと感じています。

データ・アナリティクス入門

ボトルネックを見える化するプロセス分析の力

プロセス分解で何が見えた? プロセス分解を通じて問題の原因を明らかにすることが非常に印象に残りました。実際には、ある程度理解しているつもりになってしまうことが多いため、この方法にはハッとさせられました。プロセスを分解し、フェーズ毎の定量データを比較することで、ボトルネックが見えることがわかりました。特に採用プロセスとの親和性が高いと感じました。 A/Bテストの限界を考える A/Bテストについて、一要素ずつ検証を行う方法が紹介されましたが、実際には一要素だけで結果が大きく変わることは少ないのではないかと疑問に感じました。 採用データの深掘りが重要 採用プロセスや学生の動向を分解し、どの段階で歩留まりが多いのか定量データを用いて検証していきたいと感じました。また、顧客の採用ホームページを作成した際、その後どのくらいの人がサイトを訪れ、クリックされているのか、実際に応募につながった人数(コンバージョン率)についても調査していきたいと思いました。 来年の採用戦略とは? さらに、顧客企業の採用プロセスを分解し、プロセス毎の参加数、辞退数、新規流入数などのデータを検証することが必要だと感じました。ボトルネックの原因を考えた上で仮説を立て、学生の志向性や市場全体の動きと比較することが重要です。その上で、来年の採用に向けてどのような行動を起こす必要があるかを考え、すぐに軌道修正ができる場合は速やかに行動に移したいと思います。

データ・アナリティクス入門

仮説構築で見つける問題解決の鍵

問題解決の基本は何? 問題解決において、What(何が問題か)、Where(どこに問題があるか)、Why(なぜそうなのか)、How(どのような解決策を取るか)の順で進めることが基本であると学びました。また、仮説の構築において、自身の考えの幅を広げるためのフレームワークとして、3C分析や4P分析が有効であることを知りました。 仮説立案のポイントは? 仮説を立てる際には、複数の仮説を立てることと仮説の網羅性が重要です。さらに、仮説には結論の仮説と問題解決の仮説があり、それぞれの問題に対して適切に使い分けることが大切だと理解しました。 フレームワークの活用法は? 特に自身の仕事において、仮説を立てる際のフレームワークが大変有用だと感じました。これまでは人員不足といった問題に対して自身の思いつきのみに頼り、解決策を立てていましたが、今後は3C分析や4P分析といったフレームワークを活用し、より網羅性のある仮説を立てられるようにしたいです。 人員不足問題にどう対応する? 具体的には、人員不足という問題に対して、どこに問題があり原因は何かを仮説を立てて探りたいと考えています。仮説を立てる際には3C分析を活用し、求職者側の視点、競合の動き、自社の問題(雇用条件、福利厚生など)から仮説を立ててみます。その結果、自社に問題があるとなれば、4P分析に進み、さらに深堀りして問題を特定し、具体的な対策を立てるようにしていきたいです。

データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right