データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

クリティカルシンキング入門

分解から見出す成長のヒント

分解の切り口は? 先週までの学びで、分解することの重要性については理解が深まりましたが、どのような切り口で分解すれば良いのか疑問にも感じていました。今週の学習で、分解の際に使える代表的な切り口について理解できたことは大きな収穫です。 どの手法を試す? まず、層別分解では、全体を定義した上で「~である/~でない」や年齢、性別、地域などの基準で部分集合に分類します。次に、変数分解では、売上を「単価×販売数量」、利益率を「利益÷売上」といったように、ある事象を構成する変数で分解して考えます。そして、ある事象に至るプロセスごとに分け、その中でいずれの段階に問題があるのかを明確にする方法もあります。 ユーザー離脱の理由は? 現在、会社の採用サイトではユーザーの離脱が多く、目的のエントリーに至らないという課題があります。そこで、ユーザーがどの段階で離脱しているのかを把握し、改善策を検討するために、プロセスの分解を用いてユーザー行動を細分化し、どのフェーズにボトルネックが発生しているか、また何が離脱の原因となっているのかを明らかにしようと考えています。 どの改善策が効果的? 具体的には、ゴールデンウィーク明けに課題に取り組む予定です。まずはプロセスを分解し、各段階で確認できる数字を抽出します。数字に極端な変動がある部分を特定し、そこから仮説を立て、問題の洗い出しを行います。私は、頭を整理するために紙やノートに図を書きながら進める方が分かりやすいため、その方法で取り組むつもりです。

データ・アナリティクス入門

仮説で広がる学びの世界

仮説の意味は? 仮説について、「結論の仮説」と「問題解決の仮説」という2つの種類があることを学びました。普段何気なく使っていた「仮説」という言葉について、自分はどちらの立場で話していたのだろうかと振り返る貴重な機会となりました。また、仮説を考える際には、決め打ちせず複数の可能性を探ることや、さまざまな切り口から網羅的に考えることの重要性を再認識しました。さらに、データ収集においては、必要なデータだけでなく、仮説に対する反論を排除するために比較対象となるデータも意識的に集めるべきであるという点が印象に残りました。 3Cと4Pの使い分けは? 業務では、Customer/Competitor/Companyの3C分析を中心に行っていましたが、細かいサービス検討の場面では、Product/Price/Place/Promotionの4Pも活用していく必要性を感じました。特に新規事業の商品検討にあたっては、4Pの視点からより具体的な検討を進めたいと思います。 問題解決の手順は? また、問題解決のプロセスとして、What、Where、Why、Howの順で考えることの重要性を学びました。これまでどうしてもHowから着手してしまう癖があったため、今後の学習期間内に、残りのプロセスもしっかり取り入れるようにしていきたいと考えています。 検証との連携は? 最後に、仮説と検証はセットで考え、事前の準備や仕込みを徹底し、比較データなどを用いた適切なデータ収集ができるよう努めたいと思います。

クリティカルシンキング入門

MECEで問題解決!実践的な学び

分析で重要なアプローチとは? 物事を分析する際に、売上高や入場者数の分解を行いました。この際、ただ機械的に分解するのではなく、仮説を持ち、短絡的に考えずに試行錯誤することの重要性を感じました。また、問題解決のステップとして「①問題の明確化」「②問題個所の特定」「③原因の究明」「④解決策の立案」があることを改めて認識しました。MECE(Mutually Exclusive, Collectively Exhaustive)は特に②③④の解決ツールとして有効です。MECEのアプローチには、層別分解、変数分解、プロセス分解があり、それらを自然に思い浮かべられるように意識しています。 上位層に報告する際のポイントは? プロジェクトで問題が発生した際、現場以外の社内の上位層に報告するときに、全体を俯瞰した整理が求められます。現場の部門は実情を把握しているため、自分の見えている範囲の細かい部分を報告しがちですが、これでは上位層が判断や解決策の妥当性を審議できません。全体を俯瞰して説明する上で、MECEのフレームワークは重要だと感じます。普段から業務全体を見渡す習慣をつけておかないと、問題解決のステップに進むことができない危険性を感じています。 作業見積工数の妥当性をどう示すか? 現在、顧客からプロジェクトの作業見積工数の妥当性を問われており、MECEで説明が求められています。通常作業と特別作業の区分、お互いの作業に重複がないかを確認するために、MECEの層別分解を実施してみています。

データ・アナリティクス入門

実践で磨くデータ解析の魔法

分析の本質に迫る? 今までは、適当にグラフを選んだり、大まかな平均値を算出するだけで十分だと考え、自分なりの解釈でデータを加工していました。しかし、今回の学びを通じて、目的に応じた最適な計算方法や加工方法が存在することを再認識し、そのおかげで分析力が格段に向上することを実感しました。たとえば、ヒストグラムを用いることでデータの散らばりを可視化できることや、代表値として単純平均だけでなく、加重平均や幾何平均を算出することで、より精密な分析が可能になる点を学びました。演習やグループワークを通じ、目的や仮説に合わせた手法の使い分けの大切さも理解できました。 データ分析をどう工夫する? グラフの作成やデータの計算には苦手意識がありましたが、今回の学びをもとに自主的に練習していくことの重要性を感じました。普段はアプリやITツールを使って数字をまとめ、それをもとに売上報告や予実管理を行っていますが、今後は自分で実際にデータを加工し、深く掘り下げてみようと考えています。たとえば、顧客アンケートの分析においては、単純平均だけでなく、満足度のばらつきを把握するための計算に挑戦したいと思います。また、先週の学びも取り入れ、単にデータを加工するだけではなく、具体的に何を調べたいのか、目的は何かをしっかりと意識しながら実践していきます。 グラフ選びの裏側は? なお、今週の事前準備ではヒストグラムを選んだ方が多かったと感じましたが、他のグラフを試してみた方もいらっしゃるのではないかと考えています。

アカウンティング入門

数字で読み解く経営の秘密

売上と利益の意味は? P/Lの構成を復習しながら、大きな数字で示される3つの利益について学びました。具体的には、本業がどれだけ儲かっているかを示す売上総利益、持続的に利益を生み出す可能性を示す経常利益、そして最終的な利益状況を示す当期純利益について、それぞれの意味と重要性を理解できました。特に経常利益の考え方は新鮮に感じ、会社全体の健全性を捉える上で非常に有用だと実感しました。 利益比較の意義は? また、各利益を比較することで、会社内で何が起こっているのかを仮説として立て、その原因を探ることが可能になるとも学びました。こうすることで、将来的に「何をすればよいか」がより明確になり、行動に移しやすくなると感じました。 カフェ事例は何か? 先週の事例に引き続き、今回アキコのカフェの事例を考察することで、経営においてコンセプトをずらさずに継続することの大切さに改めて気づかされました。今後は、さらに多様な商売の在り方についても理解を深めていきたいと思います。 P/L比較の実践は? 具体的には、以下の3点に取り組んでみたいと考えています。 ① 数年間分のP/Lを比較し、会社の状態の経緯や変化を考察する。 ② 仕事に限らず、公開されているデータを利用してさらなる気づきを得る。 ③ 興味のある会社の公開情報を数年分印刷し、比較することで深く理解する。 意見交換の余地は? それぞれが考えたカフェの事例についても、ぜひ意見を聞いてみたいです。

クリティカルシンキング入門

分析で見える新たな気づき

全体像をどう掴む? まず、全体像を明確にし、その上でMECEの観点から各要素を分けてみることが大切だと感じました。分析の際には、When、Who、Whatといった切り口を用いることで、気づかなかった本質や特徴が見えてくることが実感できます。たとえ分割したときに特徴があまり現れなくても、それ自体が一つの成功といえ、他の切り口での再分析に向けた前進となります。 数字から何が分かる? 次に、プロダクト営業が主な業務となる中で、8期の販売実績を業界別、企業別、新規と既存、リードタイム、職種、引き合い額、受注額、受注率、失注額、失注率、商談からのリードタイム、プロダクト別という多角的な尺度で分析する意義を実感しています。こういった多角的なアプローチにより、見落としがちな側面や新たな効果的手法を発見することができるでしょう。 リソースはどう使う? また、限られた人数でプロダクト販売に取り組む現状を踏まえ、業務分析によってどの部分にリソースを重点的に投下すべきか、あるいは外注した方が効果的かを数字に基づいて判断することが重要です。具体的には、販売実績の分析だけではなく、営業活動自体の業務分析を行い、目標達成のための仮説を立てる取り組みが求められます。 議論のポイントは? 最後に、これらの分析や仮説は常にアップデートし、得られたインサイトをチーム内で議論する機会を積極的に創出することを意識しています。こうした取り組みが、今後の行動計画や業務効率の向上につながると信じています。

データ・アナリティクス入門

仮説の問いで開く成長の扉

仮説をどう言語化する? データを見る前に「こうなりそう」と感じるのは、すでに仮説を持っている証拠だと感じます。経験や直感から「この傾向があるかも」と思うことが、後に重要な指標を絞り込むための手がかりとなります。そのため、仮説をしっかりと言語化し明示することはとても大切です。 仮説検証の効果は? 仮説が明確であれば、どの指標に重点的に注目すべきかが分かり、仮説が外れた場合でも「なぜ違ったのか?」という質問が自然に浮かび、スムーズに分析の焦点を絞ることができます。こうした仮説検証のサイクルを回すことこそが、データ分析の醍醐味であり、成果につながると考えています。 設備トラブルの影響は? 実際、稼働分析を日常的に行う中で、「おそらく設備トラブルの影響で停止が増えたのではないか」という仮説を立て、その検証に利用するデータを慎重に選定しながら、表面的な課題ではなく本質的な改善ポイントにたどり着こうとしています。 なぜをどう掘り下げる? また、分析業務において「なぜ?」と問いを繰り返すことを意識しているものの、これまで1~2回の掘り下げで思考を止め、表面的な原因に留まってしまうことが多かったと自覚しています。しかし、データ分析は正解のない問いに対して行うものであり、仮説や着眼点の精度が成果を大きく左右します。そのため、日常業務や分析の過程で「なぜを5回」繰り返すことを意識し、仮説が外れたときもすぐに切り替えず、なぜ違ったのかを徹底的に深掘りすることが重要だと感じています。

データ・アナリティクス入門

振り返りから見える未来への一歩

原因はどこで? 問題の原因を探る際には、まずプロセスに分けて考えることが重要です。どの段階で問題が発生しているかを明確にするため、原因を細分化し、全体を俯瞰することが効果的です。一概に「どうすれば良いか」を変えるのではなく、判断基準に基づいて選択肢を絞り込むことが求められます。 解決策は何で? 解決策を検討する場合は、複数の選択肢を洗い出し、その中から根拠をもって最適な方法を選び出すプロセスが必要です。目的と仮説の設定、実行、結果の検証と打ち手の決定という流れをしっかり踏むことで、効果的な改善が可能となります。検証項目やテスト要素は一要素ずつ実施し、他の環境要因の影響を避けるために、同じ期間内での実施が望ましいです。 A/Bテストの真意は? また、A/Bテストはシンプルで運用や判断がしやすく、低コストで少ない工数、さらにリスクを抑えた状態での改善が期待できます。テストの目的や仮説を明確にし、数値化できるデータを用いることで、検証プロセスがスムーズに進み、次の仮説や決定へと繋がります。 ボトルネックの所在は? さらに、問題のボトルネックを考える際は、問題を発見するために「何が問題なのか」「どこで発生しているのか」「なぜ問題が起こっているのか」を多角的に検討し、プロセス全体を整理することが重要です。たとえA/Bテストがシンプルであっても、同条件に揃えることが難しい場合は、具体的にどの要素が影響を及ぼしているのかを洗い出し、最適なテスト方法を選択する必要があります。

データ・アナリティクス入門

仮説とデータが照らす成功の道

データ収集の手法は何? まず、データの収集方法について整理します。既存のデータを確認する場合は、手持ちの情報や一般に公開されているデータ、あるいはパートナー企業が保有しているデータを活用します。一方で、新たにデータを集める手段としては、アンケート調査やインタビューが挙げられます。特にインタビューは、背景を丁寧に確認できる反面、拘束時間や費用がかかる点に注意が必要です。 仮説設定はどう考える? 次に、仮説について考えます。仮説とは、ある論点に対して立てる仮の答えや、まだ明確でない事項についての一時的な見解を指します。たとえば、ある事業の成功は難しいとする結論の仮説と、具体的な問題点を洗い出して解決策を検討する問題解決の仮説があります。結論の仮説は、計画やプロジェクトを始める際に初めに立て、それが思うように進まなかった場合に問題解決の仮説を用いることで軌道修正を行います。 仮説検証はどのように? また、仮説は検証マインドの向上や説得力を強める上で重要です。日常的に市場や競合などの状況証拠を集め、論理的に分析することで、より精度の高い仮説が立てられます。こうしたプロセスは、計画のスピードアップや行動の精度向上にも寄与します。 情報の言語化はなぜ大切? 最後に、普段から問題意識を持って状況を把握し、得た情報を具体的かつ明瞭に言語化することが大切です。興味を持った点にアンテナを張り、現象の背景を分析する習慣は、論理的な思考力とコミュニケーション能力の向上に役立ちます。

戦略思考入門

経営資源を活かし切る戦略的思考とは

ゴール達成の方法は? 目指すべきゴールを明確にし、可能な限り省エネでそのゴールに到達する方法を見極める。戦略的な行動をとるためには、現経営資源を与件として、最速のゴール達成(顧客への最大の価値創出)のための道筋を見つけることが肝要だということを学びました。そのためには、数多ある道筋(取り組み)の中から取捨選択および優先順位付けを行う必要があり、たとえ必要十分な情報が揃わなくてもハイサイクルで行う仮説検証を前提とする仮説思考で、複数の視点に基づく明確な判断基準を持つこと、ならびに投資対効果を意識することが重要です。 中期計画にどう活かす? 次期中期事業計画の策定時に、学んだ内容を活用したいと思います。「目指すべきゴールを明確にする」「やらなくてよいことをしない」「独自性(強み)を持ち自覚する」そして戦略の構造化を図ることが大切です。戦略的な行動をとるためには、有限である現経営資源を如何に活かしきるかが重要です。そのために、「やらなくてよいことをしない」を基に判断基準を明確にし、周囲の協力を得つつ、関係者と共に「ムリ・ムダ・ムラ」を意識しながら、投資対効果の観点から取捨選択および優先順位付けを立案します。 成功のカギとなる点は? 以下の点を意識して立案したいと思います。 ・仮説思考を活用する ・判断基準を明確にする ・投資対効果を意識する ・その取捨選択が本当に顧客への価値提供や強み(独自性)の発揮に繋がっているか ・「やらない場合」「やる場合」の比較検討ができているか

クリティカルシンキング入門

課題解決の本質に迫る方法を発見

イシュー設定の重要性をどう考える? 課題に対して正確なイシューを設定することで、どのような解決方法が考えられるのかを深掘りすることができます。イシューは問いかけの形で設定し、一貫した内容で考え続けることが重要であると学びました。これまで私は課題に対して問いかけるという行動を充分に行っていなかったため、今後の業務で意識して実践していきたいと思います。 学びを深める総合演習とは? また、総合演習ではこれまでに学んだことを振り返りながらアウトプットすることで、今回のコースで学んだ内容に対する理解が一層深まりました。 顧客インサイトの把握はどう重要か? 顧客のインサイト把握が重要な業務に携わっているため、顧客の課題感に対して常にイシューを設定し、「何を求めているのか」「どのような問題を解決する必要があるのか」を分析し、仮説を立てられるようにしていきたいと考えています。自身の業務においても、課題が発生した際にはあいまいな主観で判断するのではなく、本質的な問いを意識して解決に取り組みたいです。 ペルソナ設定に何を活かす? 記事コンテンツの制作においても、ペルソナを設定する際には、課題を仮説立ててイシューを設定し、「自分ならどうするか」を考えながらリアルな人物像をイメージしてコンテンツに生かしていきます。顧客情報のインサイト分析においては、顧客からのヒアリング情報や営業報告から課題感を読み取るときにも、適切なイシューを設定し、インサイト分析を行うように心掛けていきます。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right