データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

複数仮説で戦略を変える瞬間

仮説立てのヒントは? 課題に対して仮説を立てる際は、単に漠然とアイデアを出すのではなく、4Pや3Cといったフレームワークを活用することで、課題を整理して考える助けになると実感しています。また、具体的な問題解決に向けては、何が問題なのかという複数の仮説を立て、「どこに、なぜ、どうすべきか」という各段階を順に確認することで、より深く掘り下げた対策を見出しやすくなると考えています。 戦略の裏側は? 自身の業務を振り返ると、これまでは業務課題に対して仮説を立て、深堀りして解決策を導くというプロセスが不足していたと感じています。課題を分解して深く検討するステップを踏まず、思いついた打ち手に頼ることが多かったと思います。今回の学びを通じて、今後は課題に対して複数の仮説を立て、どの対策を実行するのが最適かを十分に検討する習慣を身につけ、より深い洞察に基づいた戦略立案を目指したいと考えています。 次は何を選ぶ? さらに、解決すべき課題に対して複数の仮説を立て、それぞれの対策を検討し、最終的に比較検討して選択する業務の流れが重要だと認識しました。今後、事業戦略の立案を進める中では、仮説立てや深掘り、そして対策の選択というステップを必ず踏むことで、より質の高い戦略を策定していきたいと思います。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

クリティカルシンキング入門

仮説検証で広がる学び

イシューはどう特定? イシューの特定は容易ではなく、常に分解を行わなければ混乱に陥りやすいと感じています。常に「イシューとは何か」を意識し、その切り口となる仮説を用意しつつ、多角的に検証する必要があります。実際、以前は思い込みで打ち手を考えていたときに比べ、約30倍もの時間を必要とすることを実感しました。 打ち手は何が有効? クライアントの現状に対し、どの打ち手が有効かを検討する際、これまで見慣れたSNSや特定のプラットフォームだけに頼るのではなく、リアルな情報も加味しながら、あらゆる角度からイシューを特定する重要性を改めて認識しました。 仮説の検証はどう? イシュー特定のためには、直感に頼らず、常に仮説を立てた上でデータを分析することが欠かせません。仮説の検証が十分に進まない場合は、別の仮説を設定し、さまざまな視点から考察する習慣を身につけることが大切だと感じています。 構造再考はどうすか? 自身の業務に照らし合わせると、クライアントの課題特定についてはまだ不十分だと感じました。ピラミッドストラクチャーを用いた際に根拠が不安定になる場合は、根拠を補足するための情報を集める必要があるか、もしくは一度構造を解体して再考する選択肢も考えるべきだと思います。

データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

データ・アナリティクス入門

目的を定め柔軟に切り拓く

なぜ仮説が必要なの? 分析においては、単にデータを整理して新しい気づきを提供するだけではなく、自分自身で仮説を立て、その仮説に基づいてどのような分析を行いたいか、また必要なデータは何かを考えることが重要だと学びました。以前は無意識に必要なデータを集めていたこともありましたが、目的を明確にすると分析のアプローチが大きく変わると感じます。同時に、立てた仮説に囚われることなく、他の可能性も公平に検討するスキルを身に付ける必要があると認識しました。 市場と売上の本質は? また、毎日の売上実績の確認は、単純に前年との比較やKPIの向上を狙うだけでなく、競合他社のマーケット動向や顧客へのアプローチについても視野を広げることが求められます。一社だけではなく、3Cの観点から広く分析することで、データが十分でなくても次の一手を打つための新たな視点が得られると考えています。 データ活用の秘訣は? 日々の実績やKPIのチェックに加えて、整理したデータをどう活用するか、チャレンジ精神を促す分析やその見せ方を意識することが必要です。競合の市場シェアデータなどを随時入手し、自分の活動が先月や過去と比べてどのように変化しているのかを具体的に確認できると、より実践的な行動変化にもつながると期待しています。

クリティカルシンキング入門

問題解決の道を切り開く分解術

問題解決の鍵は何か? 問題解決を行う際には、物事を分解することが重要です。分解する際は、まず全体を定義し、漏れや重複がないように意識することが求められます。 分解方法のバリエーション 分解の方法には、層別分解(例えば、「○○」と「○○以外」)、変数分解(「売上=単価×客数」)、プロセス分解(「入店前、入店後」など)といった切り口があります。もし分解の方向性に迷ったら、「いつ」「だれが」「どのように」といった視点から考えてみることが効果的です。 クライアント課題の深掘り法 また、クライアントの課題の根本原因を探る際には、MECEで分解を行い、特に重要なポイントを追求することが役立ちます。さらに、クライアントに提供している制作物を目標にさらに近づけるため、改善のポイントを洗い出すことも重要だと感じます。 データ加工へのチャレンジ 私はデータの加工が得意ではないため、仮説の幅を広げる練習をしているところです。3つの分解方法を利用して目の前の課題を分解してみても、選択肢がMECEに則っておらず、苦戦しています。しかし、一人で煮詰まってしまった時には、ChatGPTを活用しながら、反復練習を繰り返し続けています。

マーケティング入門

顧客の本音を探るテクニックを学ぶ

顧客の真のニーズとは? 顧客の真のニーズを探り出す方法を学べてよかった。新事業において仮説を検証するためにヒアリングなどはよく実施するが、質問項目や聞き方によっては答えを誘導してしまい、真のニーズを引き出すことは中々難しいと感じている。また、現在携わっている新規事業のプロジェクトが、顧客の立場や視点に立って考えることができていないことに改めて気づいた。今後は、カスタマージャーニーを実践し、本当に価値のある事業作りを目指していきたい。 行動観察で何が見える? 行動観察やデプスインタビューは、実際に価値検証を行う際に有効であると感じた。自分が顧客として考えたときに、どのような企画・事業であればビジネスとして成立するかを改めてチームメンバー全員で考えていく必要があると感じたため、これを実践していこうと思う。 今後の具体的な行動は? 具体的な行動としては以下の3つを考えている: 1. チーム内でディスカッション時間が明らかに少ないため、上司に相談して改善を図る。 2. 顧客のペインポイントが何であるのかを改めて議論し、現在の方向性が正しいかを確認する。 3. 新規の顧客に対するヒアリングを実施する。 これらの取り組みを通じて、真に価値のある新規事業を作り上げることを目指していく。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

クリティカルシンキング入門

問いを意識し続ける秘訣とは

イシュー特定の重要性とは? イシューを特定することが重要であり、その方向性が変わると学びました。重要なのは、以下のポイントを普段から意識することです。 - 問いが何であるかを意識する - 問いを意識し続ける - 組織全体で方向性を共有する ロジックツリーで広がる視野 これらを軸に、常に問いを中心に考えることが大事です。普段何気ないことでも意識して取り組んでいきます。ロジックツリーを用いると、物事が可視化され幅が広がります。 原因究明と連絡の齟齬をどう解消する? 次に、原因の根本解決と連絡間の齟齬解消について述べます。日々、関連部署や店舗から多くの質問連絡がきますが、その店舗が何を求めて質問しているのかイシューを特定することが大切だと思いました。現状では、何度か連絡を取り合いながら課題を明確にし、解決へ導いています。イシューを特定することにより、質問の根本解決や連絡回数の減少にも繋がると考えています。 仮説を立てる習慣をどう活かす? さらに、仮説を立てることを習慣化することが大切であり、何度もトライ&エラーを繰り返すことがスキル習得に必要だと感じました。自分だけの考えに留まらず、多面的な思考も取り入れ、イシューを明確化する練習を日々繰り返していきます。

データ・アナリティクス入門

MECEで分析の精度と効率をUP!

MECEの重要性を再認識 MECE(Mutually Exclusive, Collectively Exhaustive)という概念を知ってはいたものの、長い間実務で意識して使ってこなかった。そのため、What, Where, Why, Howをしっかりと整理しながら進めないと、方向性を見誤る原因となり、結果として漏れが多い分析で無駄に時間を消費することになってしまう。 実務でのMECE活用法 こうしたミスを防ぐには、実務を進める際に常にMECEを頭に浮かべるトレーニングが必要だ。特に仮説を立てる場面が多く、成果が出ない原因になりがちである。特に営業戦略を立てる際には、一般消費者向けのプロモーション内容が的外れになる可能性があるため、プロセスの重要性が極めて高い。 書き出しで得られる効果は? 動画でも言及されていたように、文字として落とし、ビジュアル化することは重要だ。書き出すことで漏れや重複を回避し、整理が進むはずだ。ロジックツリーは何年も使ったことがないが、時間の問題にもなるものの、逆に簡潔化され、スピードが上がるプロセスになるかを試してみたいと思う。また、その過程で「目的は何か」を見失わないようにし、表面的かつ形式的にならない工夫を取り入れたいと考えている。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right