データ・アナリティクス入門

面倒も味方に!工程分解の力

プロセス分解の意義は? 他の研修でプロセスマネジメントを学んだとき、結果管理だけでは検証が十分に行えず、属人化や再現性の低下が生じることを痛感しました。そのため、プロセスを細かく分解し、深掘りすることで問題点を明らかにし、打ち手の検討もしやすくなると実感しています。一方、実際の現場ではプロセスの分解は意外と難しく、面倒だというバイアスもあって浸透しにくい状況もあると感じます。 見直しの方法は? また、プロセスの見直しには、目的の設定と仮説の立案を同時に行うことが重要です。前提の議論が不十分だと、プロセスを詳細に把握する意義も薄れ、問題抽出やプロセス設計が十分に進まなくなってしまいます。 ガントチャート活用は? 仕事においてマネジメントの役割を担う中で、プロジェクト開始時にガントチャートとプロセスの分解を行うようにしています。これにより、進捗状況が可視化され、遅れや抜け漏れの予防につながり、会話の目線も統一されやすくなります。 ABテストの課題は? さらに、ABテストを実施する際には、条件の検討が十分でない場合、Aを終わらせた後にBに着手する傾向が見受けられます。条件の整備が難しいため、目的と現状の把握を明確にし、ギャップ分析で仮説や課題を複数用意、優先順位をつけた上で詳細なプロセス分解を行うことが重要だと考えています。 効果的な評価方法は? 最終的には、共通の評価基準を作るとともに、アクションプランと期限を設定することで、遅れや抜け漏れを防ぎ、目線を合わせたプロジェクト管理が可能になると実感しています。

データ・アナリティクス入門

受講生が綴るリアルな学びストーリー

仮説立ての理由は? 問題解決にあたっては、まず4つのステップに沿って検証を進めることが大切です。特に、データを見た段階で早急な結論に飛びつくのではなく、まず仮説を立て、その仮説を検証するプロセスを欠かさないようにしましょう。データはその見せ方によって印象が変わる可能性があるため、作成者の意図に左右されずに正しく理解することが求められます。また、フレームワークを効果的に活用することで、検証漏れや盲点の発見にもつながります。 分類・比較の意味は? 分析の基本原則としては、「分類して比較する」という手法が重要です。各データの確からしさや抜け漏れ、見逃しがないかを確認するために、データを適切に分類し、条件をそろえて比較する工夫が必要です。データをそのまま受け入れるのではなく、仮説を立てながら検証する姿勢を保ち、多様な分析フレームワークを活用することで、思い込みを排除して正確な評価が可能となります。 比較意識のポイントは? さらに、分析の際には分けて比較することを常に意識してください。比較対象を同じ条件の下で整理することで、普段気づかない新たな視点を得ることができ、より納得のいく分析結果に繋がります。 重要ポイントとは? 最後に、これからデータと向き合う上で絶対に忘れてはならないポイントを挙げると、まず「分けて比較する」という基本原則、次に仮説思考、そして What、Where、Why、How の4ステップに沿って考察することです。これらを意識することで、より論理的かつ的確な分析が実現できるでしょう。

データ・アナリティクス入門

実例でひも解く市場戦略のヒント

市場分析はどうする? 市場分析においては、従来の市場重視だけでなく、3Cおよび4P分析の重要性を実感しました。特に、競合の存在に対する意識が不足していた点を改める必要があると感じています。また、プロモーション戦略については、各校舎ごとに異なる方式を採用すべきだと納得しました。 データ収集はどう? データ収集に関しては、まず公開されているデータを積極的に探すことが基本であると再認識しました。官公庁のサイト、新聞、経済誌など、どのようなデータが存在するかを日常的に意識することが大切です。 現状認識はどう? まずは現状を確認し、当たり前のことでもしっかりと言語化することで、チーム全体で共通認識を持つことが重要です。その上で、原因となる事象を特定し、具体的な解決策の検討に取り組む流れが効果的であると感じました。 仮説検証は? さらに、仮説を立てた上でユーザーアンケートをデザインする際は、因数分解やクロス集計が可能な形を意識することが求められます。フレームワークを活用し、実際に分析とその言語化を進めることで、より具体的な解決策に近づけると考えます。 チーム共有は? また、アンケートデザインにおいては、チーム内で考え方や方針を共有し、どのような分析が可能か、そして実際にどのようなレポートを作成するかを仮で作成して検証するプロセスが重要です。望ましい状態と現状を整理し、効果的なフレームワークを見つけて習得すること、さらにはその内容を資料にまとめ、教えられるようにすることも大切だと実感しました。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

データ・アナリティクス入門

仮説思考で業務が変わる!実践活用法

仮説活用はどう感じる? 自身の仕事において仮説を活用して、答えの決まっていない分析や問題箇所の特定を行うステップを有意義に利用しています。日々の業務が体系立てて整理できたことで大変役立ちましたが、フレームワークの活用についてはGail等を通じて不十分であると感じています。 仮説の役割は何? 仮説について、まず仮説とはある論点に対する仮の答えを指します。問題解決の仮説と結論の仮説の二つがあります。問題解決の仮説は、問題解決のステップにおける「where」の深掘りと「why」の原因分析に関する仮説を立て、それに対する検証のためのデータを集める段階が該当します。 仮説はどう絞り込む? 仮説を考える際のポイントとして、仮説を決め付けずに複数立てること、そしてそれらの仮説が互いに網羅性を持つようにすることが重要です。また、仮説を構築する際には、3Cや4Pなどのフレームワークを活用することが有用です。データの収集においては、誰にどのように聞くか(アンケートや口頭)が重要なポイントとなります。 業績管理の真因は? 自分が担当している業績管理の業務では、計画と実績の差異を分析し、真因を把握し、改善策を立案することが求められます。このため、問題箇所の特定、原因の分析、仮説に対するデータ収集のプロセスは非常に役立ちます。 検証成功の理由は? 今週において、仮説を活用したデータ検証が成功し、部門長の了解を得られた経験があります。今後も問題解決の手順と仮説、データ収集のプロセスを効率よく業務に適用していきたいと思います。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

仮説×多角視点で見つけた新発見

仮説の組み立て方は? 仮説を立てる際には、【What/Where/Why/How】の各視点を用いると整理しやすくなります。具体的には、①問題は何か、②問題が発生している場所、③なぜ発生しているのか、④その解決策というステップで進めます。もし手掛かりが得られない場合は、【3C】や【4P】といったフレームワークも有効です。大切なのは、仮説の正確性よりも複数の異なる視点からの検証ができるかどうかであり、全体を満遍なくカバーする形で複数の仮説を立てることが望ましいです。その上で、データ収集や検証を行い、どこに問題が存在するのか、そして適切な解決策は何かを探ります。 お客様行動の理由は? 顧客の行動分析において、この方法が非常に役立ちそうだと感じました。普段からお客様の行動についてはある程度の傾向を把握しているものの、なぜそのような行動に至るのかという原因まで深堀りできていなかったため、今回の仮説設定と検証を通じて明らかにしたいと思います。また、これまでなかった【3C】や【4P】の視点を取り入れることで新たな気づきも得られると期待しています。 データ収集の方法は? まずは、自社が所有しているデータを収集するところから始める必要があります。現状のデータだけでは不足している可能性があるため、必要なデータをどのように取得するかを検討し、取得にかかる費用と解決したい問題とのバランスも考慮したいと考えています。加えて、仮説を立てることでスタッフ全員が同じ視点に立ち、各自の気づきを共有できる環境を作りたいと思います。

データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

戦略思考入門

本質に迫る!絶え間ない挑戦の秘訣

本質を理解するにはどうする? 本質を理解することは、簡単に言えても実践は難しいものです。ガリレオが物体落下の法則を発見し、ニュートンが万有引力を見つけました。しかし、それでも本質を完全に捉えているわけではありません。アインシュタインが相対性理論を提唱しましたが、それでも全てを説明するには至らず、未だに何かが欠けていると考えられています。したがって、本質を完全に理解するのではなく、むしろ理解していない可能性を認識し、仮説や定理を受け入れつつ、常に問い直して疑い続ける姿勢を持つことが重要です。この不断の努力は非常に難しく、挑戦を伴います。 時代の変化にどう向き合う? 法律や仕事の慣習も、ある前提条件に基づいています。しかし今日、米中摩擦やAI、地球温暖化などの影響で、その前提条件が大きく変化しています。もはやグローバル最適化は分断化の中で目指すべきものではなく、経済合理性も温暖化の課題を前に以前ほど盲目的に追求されるべきではありません。AIは、「働かざる者食うべからず」という鉄則に疑問を投げかけ始め、多くのことを考え直す時期が来ています。この先もサラリーマンとして働き続けるべきかどうか、定期的にAIと相談しながら検討していきたいと思います。 新しい生き方を探るには? また、ChatGPTのようなDeep Researchの技術も登場しています。この技術を利用して、定期的に収入とリスクのバランスの良い生き方を探り、もしサラリーマン以外の道を選ぶとしたら、どのような方法があるのかを確認していきたいと考えています。

デザイン思考入門

対話で紡ぐ未来への羅針盤

抽象と具体はどう? 定量・定性分析に加え、コーディング分析で述べられた「抽象度と具体化」の相互プロセスが非常に重要だと実感しました。私が実践した活動は、一般募集で参加者を募り「未来デザイン教室」を開催することから始まりました。その後、複数人を対象にマンツーマン・コーチングを実施し、事前のヒアリングシート(属性情報)、ワークシート(ありたい理想図)、オンライン対話の三種類の情報を活用して潜在的な問題点を明らかにし、今後の課題についてアドバイスを行いました。 問題の要点は何? これらの活動では、対話の中で抽象的な表現と具体的な表現を行き来させ、参加者が抱える問題や課題の全体像を共有するよう努めました。具体的な事象や数字に踏み込んで話す人、抽象的にしか表現できない人、あるいは言葉が体言止めに終始して動きのない人など、参加者それぞれの癖が見えてきました。そのため、具体的な発言が多い方には「つまり、要点は?」と問いかけ、抽象的な方には「結局、どんな意味になるの?」と解像度を上げるよう心がけました。この対話の往復により、全体像を俯瞰する視点が得られることが大きな気づきとなりました。 構図をどう捉える? また、定量・定性分析、コーディング、そしてフレームワークやプロセスを通じて「仮説の構図」を把握することができれば、隠れた領域や既存概念の硬直した部分を明確に特定しやすくなると感じました。アイデアが行き詰まった場面でも、課題の構図が見えることで、その構図自体を再構築でき、結果として新たな方向性が見えてくると考えています。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right