データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

クリティカルシンキング入門

ピラミッド構造で学ぶ伝える力

効果的な伝達方法とは? 物事を相手に伝えるためには、以下の要素が重要です。具体的な情景を切り取り、前後の状況を説明し、お互いの考えや状況を的確な言葉で表現することです。これを実現するためには、日本語の正確な使用と、文章を俯瞰して評価する視点が必要となります。しかし、自分の文章を客観的にチェックすることは難しいものです。そこで「ピラミッド・ストラクチャー」というツールを活用するのが有効です。 ピラミッド・ストラクチャーはなぜ有効? ピラミッド・ストラクチャーは、メインメッセージから始まり、キーメッセージやその具体的な根拠を下位に配置することで、論理をピラミッド型に構築します。この方法を使うことにより、作成者自身が論理の妥当性を容易に確認でき、聞き手もどのような理論に基づいて結論が導き出されたかを理解しやすくなります。 報告や提案で気をつけるポイント 特に上司への報告や顧客への提案・交渉の際には活用していきたいと考えています。具体的には、正しい日本語であることに加え、冗長にならないように注意し、ピラミッド・ストラクチャーに基づいてメインメッセージとキーメッセージを明確にすることが求められます。日本語の使用(例えば、助詞や主語・述語、能動態・受動態)について、さらに注意を払う必要があると再認識しました。 MECEを活かしたキーメッセージ構築 また、ピラミッド・ストラクチャーを作成する際には「MECE」(Mutually Exclusive, Collectively Exhaustive)も意識してキーメッセージを組み立てることが重要であると気づきました。報告の際には、事前にピラミッド・ストラクチャーで内容を整理し、対処したいと考えています。また、部下への人事評価のフィードバックにおいても、メインメッセージやキーメッセージを事前に設定した上で対応していきたいです。

クリティカルシンキング入門

問いの光、会議の鼓動

解決すべき問いは? まず、何が解決すべき問いであるか、そして今、何を解決しなければならないのか、なぜそれが必要なのかを明確にすることが重要です。問いを言葉に表すことで、思考や議論がぶれるのを防ぐための基盤が整います。 論点整理はどう? 次に、その問いに対する答えを導くため、論点を整理します。自分自身の偏りに気を付けながら、さまざまな視点から論点を洗い出すことが求められます。その上で、具体的かつ正確な情報をできるだけ収集し、集めた情報を根拠として論点への答えを主張します。このプロセスを繰り返すことで、内容に厚みが生まれ、主張に説得力が加わります。 適切な表現は? また、問いとその答えをシンプルで正しい日本語に言語化することが大切です。メッセージ性のあるプレゼンテーションにするためには、情報の整理だけでなく、聞き手にとって理解しやすい表現方法が必要です。 会議進行はどうする? 会議を主催し進行する際は、まず解決すべき問い(イシュー)を明確にし、その目的を問いの形で参加者に事前に共有します。定例の会議であっても、イシューを提示することは実践すべき基本事項です。さらに、そのイシューを解決するため、複数の視点からの論点を提示し、各参加者に必要な情報を収集するよう指示すると効果的です。多職種が集まる会議では、さまざまな視点からの情報が交わされるため、基礎知識の習得も欠かせません。 議論軌道修正は? これらの準備を整えた上で会議を進行し、議論が逸れた場合には必ず最初のイシューに立ち戻り軌道修正を図ることが求められます。解決すべきイシューを明確にし、複数の視点から検討するために常にイシューリストを作成し、その優先順位を考察します。こうした準備と情報整理により、各論点に対する答えを根拠を持って主張できるようになり、議論が本筋から逸れるのを防ぐことができます。

データ・アナリティクス入門

データで説得力を増す!MBA流の学び

講座内容の印象は? ライブ授業のアーカイブを拝見しました。今回の講座は、ビジネスパーソンが陥りがちな視点を見直し、MBA生が効果的にデータ分析を行えるよう構成されていると感じました。他のEMBA生が適切なデータ加工を行い、ケースの課題について効果的な表を作成して発表しているのに対し、私は数値をそのまま載せ、力量の差を感じることが多く、本講座の内容は非常に参考になりました。今後、レポート作成を行う際には、本講座の内容を何度も振り返り参考にしようと思います。 定量分析の意義は? パソコンを購入する時、私は「価格」と「スペック」を重視しますが、実際にはその場の感覚で購入することが多く、定性的だと感じました。ライブ授業を通じて、定量的な仕分けと表のまとめの大切さ、スモールデータを基に仮説を立て、あるべき姿を検討することが重要であると学びました。 実践の効果は? 社内の会議や発表の場でも、本講座で学んだ仮説やあるべき姿を考えた効果的な資料作成を実践していきます。この実践により、受け手の印象が大きく変わり、営業やメーカーの社内会議でも限られたリソースの中で短期間に成果を上げることに繋がると思います。ビジネスの場では、勘や直観といった定性的な判断に偏りがちですが、一工夫して定量的にデータをまとめることで、社内で数値に基づいた効果的な判断ができるようになると感じました。 一歩踏み出すのは? 普段行っている新NISAの株式投資判断や競馬の予測など、小さなことから始めていきたいです。例えば、サステナビリティに力を入れている会社を投資の目標にして、2050年のカーボンニュートラルに向けた資金の投入度をエクセルで分析し、効果的なグラフ作成に活かせると思います。また、ビジネスの場の資料作成では、小川先生の理論を基に、受け手が効果的な判断を行えるよう努めたいと思います。

戦略思考入門

有限資源が生む無限の可能性

どんな学びがあった? week1からweek5までの学びを振り返り、有限な資源を効果的に活用するためには、まず情報を収集・整理し、自分の判断軸に基づいて本質を見極めた上で優先順位をつけることが有効だと理解しました。今回の学びは、仕事以外にも応用できる点が特に印象に残りました。これまで分けて考えていた部分が、ライブ授業を通してプライベートの目標や趣味にも活かせることに気づき、限られた時間内で計画を立て、実行に落とし込めると感じました。 情報整理はうまくいっている? 日頃から情報収集や整理を行う際には、有限なリソースを意識し、時間をかけすぎないようアンテナを張っておくことが大切です。また、専門の取引先に情報提供を依頼するなど、工数管理を徹底する姿勢も必要だと考えています。 新制度の判断はどうする? 自社では捨てる・辞めるという行為について比較的寛容な面があるため、新しい制度を導入する際には試験導入を行い、実際に期待する効果が得られるかどうかを慎重に判断することが望まれます。判断軸としては、会社の方向性をしっかり把握し、経験則に頼りすぎないことが重要です。不明な点があれば相手と対話し、真意を確認するように努めたいと思います。 ニュースや情報はどう活かす? また、日常的にニュースや他社情報にアンテナを張るとともに、他社の財務諸表の分析を行うことで、内容によっては定点観測し派生する影響も把握できると感じました。さらに、専門知識を持つ取引先との接点を日頃から持つことも、情報の更新に役立つと考えています。 チームの連携はどう取る? 実行後には、捨てる・辞めるという判断もあらかじめ決めておくことで、スピード感を持って取り組むことができると実感しました。さらに、業務開始時にチームメンバーと判断軸を共有し、認識を統一することが円滑な業務遂行に繋がると感じています。

データ・アナリティクス入門

条件を揃えて見える学びの真実

正しい比較はどうする? 「Apple to Apple」という考え方が印象に残っています。同じ条件に揃えて比較しなければ、意味がなく、データを正しく読み解くために非常に重要だと感じました。頭では理解していても、経験やクリティカルシンキングが不足していると、ついつい情報を鵜呑みにしてしまう危険性があります。 企画と集客の関係は? 私は学生向けのオンラインイベントの企画と集客を担当しています。まず、企画と集客は表裏一体であり、学生の行動分析が重要です。具体的には、どの時期にどのような申込行動があるのか、参加後にはどのような行動に繋がっているのかを解析し、その結果をもとに企画の対象、開催時期、内容を決定しています。 認知広げる秘策は? さらに、集客においては「いつ、何を、どのように」告知して認知を広げ、申込を促し、開催前に離脱を防ぐ対策まで考えなければなりません。状況が常に変化する中で、申込状況をリアルタイムに把握し、必要な打ち手の変更を迅速に行うことが求められます。企画の効果が集客に影響するため、両者は密接に連携させる必要があります。 データ整備は進んでる? 現状では、まずデータの整備が最優先事項です。折り返し地点まで進めていますが、依然として地道な作業が続いています。正直なところ、「会社が整えておくべきだ」という愚痴も出るほどですが、しっかりと整備を進めなければ本質的な分析はできません。今後も引き続き取り組んでいきます。 管理方法はどうなってる? また、データの記録や管理、分析を効果的に行うためには、エクセルフォーマットの整備も欠かせません。どのようにすれば見やすく、管理しやすく、分析しやすいかを、部署メンバーと意見を合わせながら調整を進めています。この作業は地道ですが、本質的なデータ分析の議論に繋がっているため、継続して進めていく覚悟です。

クリティカルシンキング入門

問いの連鎖が生む未来への一歩

思考はどう鍛える? 知識を思考力に変えるためには、知識のインプット、アウトプット、他者からのフィードバック、そしてその振り返りというサイクルを継続することが必要です。このサイクルを繰り返す以外に、思考力を鍛える手段はないと感じています。 問いは何だろう? 実務の現場では、まず「問いは何か?」という基本的な問いからスタートし、その問いを残すことや共有することが重要です。たとえば、現在何が課題なのかを見極めることは、リーダーにとって最も大きな役割だと考えています。 グラフで効果は? また、数字の力を最大限に引き出すためには、グラフ化するなど視覚的に表現することが効果的です。グラフ化することで、仕事の成果や順位の整理がしやすくなり、目で見て理解できる状況を作り出すことができます。さらに、物事を細かく分解することで、全体の解像度が高まり、適切な分類が可能になると実感しています。 抽象と具体は? 一方で、抽象的な概念と具体的な事例の行き来にはまだ苦労しています。会社目標である「生産性向上」など、抽象的なテーマを具体化できず、言葉にしないと行動に移せず、結果として自分だけでなく周囲も状況を十分に把握できない混乱が生じています。しかし、今後はこの抽象的な問題にもあきらめずに取り組み、改善を図っていきたいと思います。 意見交換で進む? そのために、まずはコミュニケーションを積極的に取ることが大切だと考えています。相手と「問いは何か?」を共有することで、意見交換がスムーズになり、課題の本質が見えやすくなると思います。次に、これまでの取り組みや経験を振り返る時間をもっと確保し、ノートやメモに記録しておくことで、長期的な視点で自己評価を行いたいです。最後に、日々の学習を継続し、新たな知識や情報の獲得に努める姿勢を忘れずに、今後の成長につなげたいと考えています。

デザイン思考入門

実践から生む学びへのヒント

学生支援はどう実現? 自身の高専教員としての立場から、これまでの学びを実践に活かすための取り組みを行いました。まず、学生が直面する「基礎をしっかり学びたいが演習時間が足りない」というジレンマについて、その構造を明確に整理しました。学生が陥りやすい回避行動(課題の丸写しや要領だけの学習など)を予測し、それらを防止するための支援策を設計することで、より効果的なサポートを実現しました。 必要ツールは何だろ? また、各科目で最低限必要な学習ツールを特定し、その使い方を段階的に指導する「学びの三種の神器」の提供にも努めました。学生の成長に合わせた発展的なツールの提案、そして理解度や興味に合わせた課題の難易度調整や柔軟なグループ学習と個別学習の組み合わせにより、一人ひとりにカスタマイズ可能な学習支援を目指しました。 アプローチの効果は? さらに、「山と道」のアプローチを高専の教育現場に応用することで、いくつかの重要な気づきを得ました。まず、教員自身が学生と同じ立場で課題に取り組むことで、表面には現れにくい困難点が明確になり、学生の具体的な声を構造化できることを実感しました。これにより、より効果的な支援策の構築が可能となりました。 基礎習得はどう見る? また、基本的なツールや知識の確実な習得を前提とし、その上で個々の興味や理解度に応じた発展的な学びを提供する段階的設計が極めて重要であると感じました。加えて、小規模な改善を迅速に試み、学生のフィードバックを即座に反映させる継続的な実践と改善のプロセスが、教育の質向上につながると理解しました。 改善サイクルはどう機能? こうした経験を通じ、教育現場にも使用者視点に立った改善サイクルが存在することを改めて認識しました。今後もこの視点を大切にし、より効果的な教育実践を追求していきたいと考えています。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

クリティカルシンキング入門

深掘りの習慣で得た視点の力

深く考える習慣をどう養う? 物事を深く考える習慣を身につけることが大切だと感じました。表面的な情報にとどまらず、本質や意図を常に考える姿勢を保ちながら、鋭敏な感性を持つことが重要です。物の見方も偏らず、多様な視点で捉える姿勢が大事です。新しい発見や視点から考えることで、これまで気づかなかった発見に出会えるのではないかと思います。また、感情に流されることなく、感情的にならずに判断することが求められます。これらのプロセスを経て、質問する力がつき、自信も生まれるでしょう。こうした過程が、正解に至るためのプロセスであり、それこそがクリティカルシンキングだと感じています。 IT業界での活用法は? 私はIT業界に従事していますが、問題解決やトラブルシューティングの場面でこの考え方が役立ちそうです。エラーが発生した際にはまず「その本質は何か?」と考えることから始めます。また、要件定義や仕様書作成の際にも、顧客の要件や要望を本質から理解することで、顧客要望の実現度に比例した品質を追求できます。プロジェクトの意思決定でも、複数の選択肢からベストなものを判断する助けとなるでしょう。具体的な例では、コードレビューが挙げられ、そのロジックが何を実現しようとしているのかを把握するのに有効です。リスク評価やセキュリティ対策など、ほぼすべての場面でこの考え方が役立つと感じています。 具体的なスキル向上法は? まず、明確な目標を設定し、どの業務や場面に適用するか課題を設定します。次に情報収集を行い、報告する情報や受け取る情報の正確性を確認します。その際、情報を疑ってみたり、批判的に見る癖をつけます。話をする際には複数の視点を持ち、問題を小さな単位に分解して考える習慣をつけます。また、感情的になるのを避け、感情と事実を分けます。これらを習得し続けてスキルを磨くよう努力を続けます。

クリティカルシンキング入門

読んでもらえる資料作成の秘訣

本講義では、相手に「読んでもらえる」文章やスライドの作成に特に注意を払うことが大切だと再認識しました。以下に具体的なポイントをまとめます。 まず、スライドの作成において重要なのは、関連する情報をただ単に盛り込むのではなく、伝えたいメッセージを明確にすることです。相手にとって読みやすい資料を作成するためには、以下の点に注意します。 # グラフの見せ方 - 自分が伝えたいことを基準に、適切な視覚化手法を選びます。 - グラフにする際は、形式や縦軸/横軸、目盛り、単位などの細部に気を配ります。 - 視覚化(グラフ)には、できるだけ慣例に則った方法を用います。 # 文字の表現 - 伝えたいメッセージに合わせた書体や色を使います。 - 文字情報だけでなく、アイコンなどを補助的に用いて視覚的理解を促すことも有効ですが、過度に利用しないよう注意します。 # スライドの構成 - 情報の順番に注意し、図表を情報が出てくる順序で配置します。 - スライドの意図や伝えたいことが分かるように、言葉を添えて補足します。 - メッセージと図表の整合性を保ち、強調したい箇所を意識します。 また、作成した報告資料や管理シート、会議でのプレゼンテーション、メールやチャットでのテキストコミュニケーションなど、様々な業務の場面でこれらのポイントを活用できると考えます。 特に今後意識したいのは、相手に「読んでもらえる」文章やスライドを作成することです。業務に取り組む際には、次の点を念頭に置くよう努めます。 - 自分が伝えたいことを相手に理解してもらうため、伝えたい内容を基準に適切な見せ方(視覚化)を選択する。 - 相手のリテラシーに合わせた言葉を選ぶ。 - 情報を探させない構成にする。 これらのポイントに注意することで、より効果的なコミュニケーションが可能になると確信しています。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

「表 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right