デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

データ・アナリティクス入門

分析目的を明確に!データ活用の極意

分析の目的設定はなぜ重要? 「分析とは比較なり」が今回の講義の究極のゴールであるが、それだけでは不十分である。分析の目的をしっかり設定し、自分なりに仮説を立て、それに必要なデータを用意することが重要だ。また、適したグラフを選ぶことも必要である。 結果を伝えるための見せ方とは? 分析の目的を念頭に置きつつ、最終的にはデータ分析を基に説明や説得を行うため、見せ方にも気を配る必要があると感じた。 データ分析の活用方法は? 現在、保証契約のデータを分析している。目的は、経営陣に過去の実績を報告することと、顧客に実績を示すパンフレットを作成することである。それぞれの目的を追求すると、保証契約制度を推進する施策の検討や実績アピールによる利用促進が考えられる。これらの目的を念頭に、どのデータを分析すべきか、どう表現すべきかを考えることが大切だ。 記憶に残る工夫はどうする? 目的に立ち返ることを忘れないようにしたい。具体的には、PCの壁紙や手帳など、日常的に目にするものに「分析とは比較なり」と記入しておき、記憶のフックを作りたいと思う。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

データ・アナリティクス入門

営業目標達成に向けた改善策と学び

施策の比較でつまずく理由とは? 施策を考える際、いくつか異なるものを試す傾向があったが、比較の軸がずれているケースが多々あり、その後のブラッシュアップにつながっていなかったと感じた。また、法人営業の立場ではWEB上でのA/Bテストの比較は難しいが、プロモーション検討などに役立てたい。 課員の訪問件数を改善するには? 【課員の顧客訪問件数が目標未達成の原因分析】 私たちの課では、一日2件、週10件の訪問目標が達成できず、案件数や案件総量も伸び悩んでいる。以下のような原因が考えられる。 - 課員の(やる気を含めた)スキルの問題 - 顧客層とのニーズの不一致 - 当社のブランド力 - 他の作業に追われている 下期のアクションプランを考えるには? 複数の原因が想定されるため、個人別に原因分析を行い、適切な対策を検討したい。 下期の個人別アクションプランにおいては、まず上期の振り返りとして、なぜ目標を達成できなかったのかを個別に検討してもらう。その後、目標達成のための改善策を共に考え、月次で改善度合いを評価し、PDCAを実践する。

データ・アナリティクス入門

仮説で開く未来への扉

仮説の意義は何? 普段は無意識に仮説を活用していましたが、今回改めて仮説について深く考える機会となりました。問題点に対してフレームワークを用いて仮説を立てることで、対応が迅速になるという認識はこれまであまり持っていなかったため、今後はより丁寧に仮説を構築し、その正しさを確認しながら業務に取り組んでいきたいと考えています。 仮説の落とし穴は? 実際に仮説を立てる際、つい思い込みに基づいた仮説になってしまうことが印象に残りました。そのため、クリティカルシンキングを意識し、より網羅的に状況を確認するよう努めます。また、困りごとが発生した場合、ユーザーが直面している問題をフレームワークを活用して洗い出すことも重要だと感じています。特に4Cの視点はこれからも大切にしていきたいです。 施策はどう進める? 新しい施策を検討する際には、4Cを活用して仮説を構築し、その仮説に基づいて必要なデータを収集し、提案へと繋げていくつもりです。データを集める際は、自分のバイアスに左右されず、幅広い視点で情報を整理するよう心がけたいと思います。

戦略思考入門

学びが生む業務革新の未来

戦略の振り返りはどうですか? 今週は、これまで習得してきた戦略思考を振り返り、それらの知識を今後どのように業務に活かすかを考える貴重な機会となりました。基礎をしっかりと定着させ、ライブ授業で紹介された書籍を通して理解を深めながら、実務で積極的に活用していく所存です。 薬局業界で感じた意外な点は? 私は薬局業界で戦略の立案や各店舗への展開・統括を担っており、今回の学びは業務に直結する内容であるため、大変有益だと感じています。現在、今期の目標達成に向けた施策の実行を進めている中で、年度後半に向けた下期戦略の修正や再構築の際には、今回得た知見を積極的に取り入れて実務成果につなげる計画です。 未来対策はどう進める? 具体的には、PEST分析とシナリオプランニングを組み合わせ、まず現在の経営環境を多角的に把握し、その上で将来の変化を予測して必要な対策の検討・準備を行いたいと考えています。また、グループワークに参加される皆様から他業界の戦略思考の活用事例を伺い、今後の実務に活かすためのヒントや新たな学びを得られることを期待しています。

マーケティング入門

ペルソナが変えるサービスの未来

商品の真価はどこ? 商品の価値は、単に商品そのものを評価するのではなく、体験といった付加価値も含めた全体で判断されます。そのため、売り方もこの視点に合わせて変化させる必要があります。従来の先入観にとらわれず、顧客の立場に立ってどのような商品やシチュエーションなら購入したいと思えるのか、改めて考えることが大切です。 ペルソナのギャップは? 私が担当している自社サービスでは、当初20~30代の若年層をペルソナとして想定していましたが、実際には40~50代の利用者が多く、ペルソナに大きなギャップがあることがわかりました。このことを踏まえ、実際の利用者に寄せたペルソナ設定とメッセージングの見直しを図った結果、より利用者自身が「自分ごと」として感じられる内容に改善することができました。 どんな時に薦める? また、現在はリファラル施策にも力を入れています。顧客がどのような状況で他者にサービスを薦めたくなるのか、また、どのような方法が薦めやすいかという視点で検討を進めており、今後も顧客視点を重視した取り組みを展開していく予定です。

データ・アナリティクス入門

なぜとどうで解く課題の本質

なぜWhyとHowを重視? 今週は、What→Where→Why→Howの流れの中でも、特にWhyとHowの部分に重点を置いて学習しました。問題解決のプロセスとして、まずプロセスを細かく分解し、その問題に至る各課題について、なぜその状況に至ったのかを仮説を立てながら考える手法が印象に残りました。 なぜ原因を深堀? また、複数の原因を明確な根拠に基づいて絞り込むことが、問題の本質を理解する上で非常に大切だと感じました。実務においても、売上やサイト訪問数などの行動変容と、認知度や利用意向といった態度変容の両面から施策を検証し、その結果に対してなぜ売上が伸びたのか、認知度が上がったのかと、丁寧にプロセスを分解することの重要性を再認識しました。 なぜ多角的検証? さらに、施策の結果をすぐに結論づけるのではなく、各プロセスを細かく見直し、仮説に基づいて多角的な切り口で施策を検討する姿勢が大切だと感じました。そのため、A/Bテストや簡易調査などを定期的に行い、施策の効果や課題を可視化して検証することが求められると学びました。

データ・アナリティクス入門

数字と仮説で描く成長ストーリー

実践と検証はどう感じた? ライブ授業では、これまで学んできた内容の復習と実践演習ができた点がとても良かったです。データ分析においては、単純に数字を眺めるのではなく、比較を用いてしっかりと検証し、問題解決のプロセスに沿って取り組むことの大切さを実感しました。また、仮説を立ててからデータ収集を行い、やみくもな分析ではなく、数字の根拠に基づいたストーリーを構築する重要性を改めて認識しました。 施策はどう整理する? 今年度のマーケティング施策の振り返りにおいては、まず仮説をしっかりと立て、その後に問題解決のプロセスに沿って必要なデータを収集し、分析を進めています。さらに、来年度の施策を検討する際も、予め仮説を整え、後でデータ分析がしやすい状態で施策を実施する計画です。 仮説と比較で何が判明? 現在、各メンバーに仮説の策定を依頼しており、分析に必要なデータを収集する段階へと進んでいます。集めたデータを比較することで、成果が出た施策の要因や、あまり効果が現れなかった理由について、具体的な考察を進めていく予定です。

マーケティング入門

伝わるネーミングで未来を拓く

ネーミングの効果は? ネーミングは、商品の魅力や伝わり方を左右する非常に重要な要素だと実感しました。たとえ技術的に優れた商品でも、「どう伝えるか」が曖昧だと売り上げに結び付かないため、単なる言葉遊びではなく、顧客の心に商品像を描かせる第一歩として捉えています。 市場セグメントの見方は? 今後は、イノベーションの普及要件を意識しながら事業や施策を検討することが大切だと考えます。また、ターゲットに対しては市場を細かくセグメント化し、効果的なターゲティングを行うことが不可欠です。 効果検証はどう? 新商品展開の際には、ネーミングがイノベーションの普及要件を満たしているかをフレームワークに落とし込みながら検証し、顧客が購入をためらう要因を洗い出します。その上で、施策や企画、販促物の制作に反映させることを目指しています。 競合はどう捉える? さらに、競合が存在する中では、既存の枠にとらわれず、行動変数を意識した上でターゲティングやセグメントの切り分けを行うことが求められると感じています。

アカウンティング入門

数字でひもとく経営のヒミツ

貸借対照表とは? 貸借対照表は、どのようにお金を使ったか、そしてそのためのお金をどのように集めたかをまとめたものです。 資産と負債の意味は? この表は、資産(会社の財産)、負債(返す必要があるお金)、純資産(返す必要がないもの)の三つに分類されます。資産の合計と負債および純資産の合計が同じになるため、バランスシートと呼ばれ、略してBSとも言われます。 分類の違いは? また、資産は流動資産と固定資産に分けられます。流動資産とは1年以内に現金化できるものを指し、固定資産は1年以内に現金化する予定がないものを意味します。同様に、負債も流動負債と固定負債に分類され、流動負債は1年以内に支払いが必要なもの、固定負債は1年以内に返済する必要がないものとなります。 他社とどう比べる? 業界や会社のコンセプトによって、流動資産、固定資産、流動負債、固定負債の比率は異なります。自社を他社と比較し、これらの割合から自社の体質を分析することで、今後の施策の方向性を検討する参考にすることができます。

クリティカルシンキング入門

振り返り文の内容を読む限り、以下のタイトルを提案します。 --- 会議の無駄を減らすための秘訣を学んだ

イシューの重要性を考える 今何をすべきかを明確にする(=イシュー)ことが重要だ。話が本筋から逸れて結論なく終わる会議が社内でもよく見られるが、その原因はイシューの共有が不足していることや、議論の途中でイシューが変わってしまい気づかないことにある。こうした問題を解消するためにも、イシューを明確化して共有し、一貫性を保った議論を心がける必要があると感じた。 ミーティング効果をどう高める? 小さなチーム内ミーティングではふわっとした議題が多く、話が脱線することが多い。その結果、時間を割いてもアウトプットが少ないことが課題だ。まずはミーティングの目的を明確にし、今すべきことを考える。その上で意見を出し合うことで、アウトプットの質も向上すると思う。 効果的な課題解決へのアプローチ 課題解決にあたっては、本質的な問いを特定し、メンバーと共有した上で施策検討を始めることが重要だ。また、資料作成においては、相手に納得感を得られるよう心がけることが必要で、視覚化やメッセージの工夫をすることで効果が上がると考える。
AIコーチング導線バナー

「施策 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right