戦略思考入門

学びから戦略への第一歩

フレームワークは何? 3C、SWOT、バリューチェーンなどのフレームワークを学ぶ中で、外部・内部分析の基礎を理解することができました。具体例も交えられており、とても分かりやすかったです。今後は、さらに多くのフレームワークの知識も広げていきたいと考えています。 業務改善のヒントは? 一方、学んだフレームワークをすぐに自分の業務に適用してみたものの、分析の粒度が粗く、経営の成功に直結する具体的な施策を打ち出すのは難しいと感じました。専門家同士が集まり、内部・外部の分析を行うことで、より高度な施策の立案が可能になるのではないかと思います。 戦略再考はどう? 今後は、フレームワークの基礎を踏まえた上で、自社の経営戦略の資料を再度確認し、戦略検討のプロセスや考え方を自分なりに学び直していきたいと考えています。まとまった時間が確保できる長期休暇などを活用し、じっくりと身に付けていくつもりです。

データ・アナリティクス入門

平均だけじゃ見えない世界

平均値だけで判断? 平均値だけを見ると誤った判断をする危険性があると学びました。そこで、データの分布を詳しく分析することでばらつきを把握し、分析対象の値についていくつかの代表値を意識することで、より確かな分析が可能になると実感しました。 各地域で違いは? また、これまで地域ごとに単純なヒストグラムグラフを用いて施策の導入率を示していたところ、異なるビジュアルで各地域の分布を可視化する手法が有効であると感じました。これにより、データの違いから仮説や対策を導き出すことができ、より実践的な分析が行えると考えています。 再考してどう変える? 今後は、常に分析の方法やデータの捉え方を再考する習慣をつけ、複数の視点からデータを加工・表示する手法を試みたいと思います。また、比較を意識しながらギャップの要因を探り、そこから具体的な対策を検討していく姿勢を大切にしていきます。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

アカウンティング入門

P/Lで読み解く戦略の扉

コンセプトとP/Lは? P/Lの見方を理解する中で、企業のコンセプトとP/Lのバランスが非常に重要であると実感しました。P/Lから仮説を立て、どの部分で利益を生み出していくのかを考察することで、会社の方向性や戦略の正しさが見えてきます。 戦略の整合性は? その上で、まず自社の分析を改めて行い、コンセプトと利益構造の整合性や、今後の戦略・方向性が適切に合致しているかを確認することが大切だと感じます。具体的には、以下の点を重視しています。 ① 戦略立案時、特にキャンペーンや市場拡大を目的とする場合に、P/Lを基に戦略の妥当性を検証する。 ② コンセプトとP/Lの分析結果から、個々の施策が会社全体の戦略と一致しているかを判断する。 ③ 自社の定期的な分析と共に、競合他社の動向を把握し、コスト競争か付加価値の提供かを見極めた上で、適切な競合対策を検討する。

アカウンティング入門

数字が紡ぐビジネスの物語

事業と数字の関係はどう? あるカフェの事例を通して、事業コンセプトや大切にしている価値観がPLの各数字にどのように影響するのか、その面白さを知ることができました。単なる数字の羅列ではなく、ビジネスの本質を読み解く上で、各項目が持つ意味に気付かされ、非常に興味深く感じました。また、コスト削減を安易に進めると、ビジネスの根幹であるコンセプトや大切にしたい価値を損ね、最終的には売上減少という結果を招く可能性があるため、慎重な検討が必要だと学びました。 自社との比較はどうなっている? 自社の事例に照らし合わせ、事業コンセプトや大切にしたい価値がPLのどの数字にどれほど影響しているかを改めて確認したいと考えています。そして、その数値が自社の目指す姿にどれほど近づいているかを把握し、もしギャップが見られる場合には、その解消に向けた施策の検討に取り組みたいと思います。

戦略思考入門

本質を掴む経営戦略のコツ

定石をどう捉える? ビジネスの定石を正しく理解し活用することの大切さが印象に残りました。漠然とした知識だけで判断してしまわず、本質をしっかりと捉える姿勢が必要だと感じています。 適切な打ち手は? また、単に総生産数を増やすだけでは規模の経済が働くかどうかは不明であり、自社の状況に合わせた適切な打ち手を検討する必要があるという点も重要だと思いました。 大数字の罠は? 技術開発提案書を作成する際、年間や生涯の生産数といった大きな数字を用いていましたが、規模の不経済が生じていないか、また工場の生産状況を踏まえた上で、より効果的な施策を考える必要性を強く感じます。 情報の真偽は? さらに、範囲の経済性などの要素も十分に考慮し、単なる定石に頼るのではなく、部分的な情報だけに流されずに事実の本質を見極めることが求められていると実感しました。

戦略思考入門

現状把握と戦略で切り拓く未来

内部と外部はどう捉える? フレームワークを用いて、自社の内部環境と競合の外部環境を整理し、自社の特徴を理解する重要性を実感しました。現状を正確に把握することが、戦略的な施策決定の土台になると感じています。 顧客視点の差別化は? また、差別化を考える際には、顧客の視点に立って検討することが大切だという気づきを得ました。特に、日本的な組織が有するすり合わせ技術は模倣困難であり、それ自体が大きな強みになり得ると理解しました。さらに、顧客にとってどの提案が最も価値があるのかを、VRIO分析を通じて検討することの必要性も実感しています。 実践学習の効果は? 一方で、動画学習や講義と実践演習との間に大きな差を感じるため、効果的な学習が十分に進んでいないように思います。皆さんはどのように予習を進めているのか、ぜひ意見を共有していただきたいです。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

クリティカルシンキング入門

日々の反省が育む未来戦略

なぜ毎日の反復が必要? クリシンを実践するためには、日々の繰り返しが欠かせないと改めて感じました。特に、「考える前に考える」姿勢を意識することで、自分の思考の癖を認識し、楽な方向へ流れてしまわないように心がけることが大切だと思います。 どう戦略的に考える? また、戦略的に考え、現状や未来に向けた施策を検討するために、適切に分解し、様々な観点から数値を分析して仮説を持つことが重要です。このプロセスを繰り返し続けることで、着実な成長が見込めると感じています。 どう差別化を図る? そして、AIの存在がある現代では、自分たちのコンテンツをどのように差別化するかが大きな勝負どころだと思います。まずは現状を把握し、将来に向けた戦略を立てることから始め、取れる施策について仮説を持ちながら振り返るフィードバックを重ねていきたいです。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

「施策 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right