戦略思考入門

捨てる勇気で成果最大化

成果最大化の秘訣は? 限られたリソースで最大の成果を上げるためには、余計なものを捨てるという選択が重要だと理解しました。捨てる行為自体はネガティブなものではなく、むしろ成果を最大化するための積極的な意思決定だと捉えていきたいです。 判断基準を整える? 捨てる際には、明確な判断基準を持ち、その基準をメンバーと共通認識として共有することが大切だと感じています。以前、何となく自分の基準で判断していたためにメンバーの納得を得られなかった経験があり、今後は具体的な基準を提示する必要があると考えています。 ROIは活用できる? また、ROI(投資対効果)の概念は、不要なものを見極めるための有効なツールになると捉え、引き続き活用していきたいと思います。 集中戦略の効果は? 業務においては「選択と集中」の方針のもと、やるべきことにリソースを集中することをメンバーに伝えています。しかし、過去には伝統や愛着のあるものという理由で、不必要なものを捨てることに抵抗があり、その結果、リソース不足や業務時間の過多に陥る傾向が見られました。今後は、事業方針に沿った明確な判断基準と投資対効果を基に、捨てることがポジティブな決断であることを再度伝えていきたいと考えています。

マーケティング入門

相手の心をつかむ学びの秘密

どうやって価値を伝える? 「何を売るか=何が求められているか」という視点を常に念頭に置くことが大切だと感じています。相手が自覚していない潜在的な欲求を引き出し、具体的に示すことで、その価値を実感してもらいやすくなると思います。また、相手のニーズを把握するには、本音が言いやすい信頼関係や環境(ラポール)が不可欠です。さらに、ネーミングが与える印象が売上に大きな影響を及ぼすことや、自社の強みを効果的に活用することも重要なポイントです。 訪問者の意図は? 自社サイトの改修作業においては、訪問者が求める情報や、抱えている悩み、目的を考慮しています。サイト内で紹介しているサービスを利用することで得られるメリットや変化、そして自社の強みがどのようにサービスに反映されているのかを具体的に提示するよう努めています。 ラポール形成の壁は? 一方で、会議やユーザーインタビューの際の最初の雑談など、限られた時間内で信頼関係を築くラポール形成には苦手意識があります。伝えるべきことやヒアリングすべき内容が決まっていると、少しでも早く必須タスクを終わらせたいという焦りが生じてしまいます。もし、周囲にラポール形成が得意な方がいらっしゃれば、そのコツを教えていただきたいと考えています。

データ・アナリティクス入門

ここにあった!生存者バイアスの真実

弾痕が少ない理由は? 今回の研修で最も印象に残ったのは、戦闘機の補強に関する話でした。弾痕が多く残っている部分ではなく、むしろ弾痕が少ない部分を補強すべきという考え方に驚かされました。この事例は「生存者バイアス」と呼ばれ、帰還できなかった機体の状況を無視すると正しい判断ができないという重要な教訓を示していました。 比較対象の選び方は? また、分析の基本は「比較」というシンプルな考え方に基づいているものの、適切な比較対象を選ぶことや、見えにくいデータに注目することの難しさと大切さを改めて実感しました。 データ比較で改善策は? 私が担当しているシステム開発プロジェクトにおいては、テスト工程でのバグ検出率向上が課題です。そこで、研修で学んだ比較の考え方を活用し、成功事例と失敗事例のデータ、たとえばテスト時間やレビュー時間を比較することで、より効果的な改善策を見出していきたいと考えています。 比較難点をどう乗り越える? ただし、比較対象の条件が必ずしも揃っていないケースや、対照となる対象そのものが存在しない場合など、現実のデータ分析では困難な点もあります。こうした状況では、新しいデータの収集や、比較方法の検討をさらに深掘りしていく必要があると感じました。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

クリティカルシンキング入門

データで解決!本質を見極める学び

本質的な課題を見極めるには? 本質的な課題が何であるか、そしてその課題解決のために何をすべきかを理解することは重要です。しかし、それを見誤れば、当然対策も効果的ではありません。これまでできていなかった部分もあり、その認識を新たにしました。データを得る限り分析して本質的な課題を見極め、「イシュー(問題)」を具体的に特定することが重要です。そのイシューを議論・検討の過程でも意識し続けることで、効率的に進めることができると感じました。 戦略はどう練るべき? 事業計画の策定においては、戦略立案から戦術・施策の決定までの過程で、今回の学びを生かせると感じています。見えている事象や問題をその場しのぎで解決するのではなく、データ分析が可能な分野では本質を見極めた上で、中長期的に最も効果的な戦略や戦術、施策を立案できるようになりたいと思います。 議論の焦点は何? 物事を議論・検討する際には、まず「イシュー(問い)は何か」を話し合い、具体的に定義してから進めることが大切です。また、議論が停滞する際には、改めて「イシュー(問い)」を再確認し、議論のポイントや方向性を修正する時間を持つことを実践したいです。これに関連して、ファシリテーションのスキルも身に着けたいと思います。

戦略思考入門

選択と集中が導く成長 戦略で切り拓く未来

精神論は成果に繋がる? 私は精神論に偏り、あれもこれもすべてやってみようという気概で取り組んでいましたが、その結果として実際に習得できた実感は得られませんでした。講義で強調されていた「選択と集中」の視点を大切にし、広く浅く学ぶのではなく、理解から実践へと移行できるよう、繰り返し学び、アウトプットと思考の整理に努めていきます。 転換期の戦略はどのように? 100年に一度と言われる転換期の業界において、社内戦略や将来予測を共有する際、顧客や自社、他社、さらには潜在的な競合の可能性も客観的に把握し、それを基に論理的なプレゼンテーションで上層部を動かしていくことが必要です。具体的には、将来的に自部門のメンバーをどのように活躍させるか、またその活躍が社会や会社にどのように貢献し、お客様へどのような価値を提供するのかを徹底して追求していきます。 戦略実行は効果ある? PEST分析や業界内外の動向に敏感にアンテナを張りつつ、各課題に対して2週間単位で戦略を立案し、それを実践していきます。その戦略を第三者に説明し、改善点についてフィードバックを受けることでさらに向上を図ります。また、各テーマごとに日程を設定し、限られた時間内で一つひとつを丁寧に検討していきます。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

分けて比べる!分析の真髄

4段階は何を示す? 4段階の仮説→検証→改善策立案を、具体例を交えて説明していただき、各段階での重要なポイントが明確になりました。自己流や独学で試行してきた私にとって、とてもありがたく、有意義な時間となりました。 分け比べで何が分かる? 初回から印象に残ったのは「分けて比べる」という考え方です。繰り返し実践することで、分析の本質を実感できるようになりました。 データ選択はどう考える? また、社内で適切なデータを選び出す際には、データが目指すべき姿を示しているのか、あるいはデータ自体が何を表しているのかをしっかりと見極め、指標として活用する重要性を感じました。眺めるだけでなく、常に目的意識を持ってデータに向き合うことが大切です。 自社データ整備はどう? まずは自社データの整理を行い、そこからカテゴライズやインデックス化を推進し、目的別にすぐ利用できる状態を整えたいと考えています。また、データの整え方や代表値の種類、グラフ化、ピボットテーブルの加工方法など、基礎的な手法を部内にレクチャーすることで、自分自身の理解不足や弱点を洗い出し、互いに教え合いながら、数ヶ月後にはみんなが同じ目線で分析結果を議論できる環境を作り上げたいと思います。

クリティカルシンキング入門

自問自答が育む確かな自信

疑問で自信は築ける? 自分に自信を持つという言葉はよく耳にしますが、私が感じる自信は、クリティカルシンキングという批判的思考の結果として生まれるものです。問いを立て「本当にこれで良いのか?」と自問自答を繰り返すことで、思考や表現方法が次第に洗練され、結果として自信へとつながっていくと実感しています。 伝え方はどうする? また、情報を発信する際には、誰が読んでも理解できる内容であることを意識しています。文章やプレゼンでは、主張したいポイントをさまざまな手法で表現し、聞き手の注意を引く工夫が重要です。会議や議事録においては、問題の核心(イシュー)がすぐに確認できるように記載することで、参加者全員が共通の理解を持てるよう努めています。さらに、周囲を巻き込み、動いてもらうためには、納得感を与える具体的な根拠を提示することが大切です。 意見で成長する? 加えて、アウトプット後は時間を置いて再確認する習慣をつけています。自分だけでなく、他者にフィードバックを求めることで、より良い成果につながると考えています。会議の際は、最初に目的(イシューやゴール)を明確に説明し、参加者にとっての行動のメリットを意識した根拠を示すよう心がけています。

クリティカルシンキング入門

スライド作成のコツを学び、効率UP!

データの相関性とは? メッセージと図、グラフなどのデータの相関性について考える際には、まず伝えたい内容と誰に伝えるかを明確にすることが重要です。これにより、作成にかける時間の効率も向上します。 スライド作成の工夫は? スライドの補足的な要素として、矢印、フォント、配置などを有効に活用することは大切です。特に、新入社員向けに年間予算作成方法をレクチャーする際には、図や一般的な用語を使い、文字数を増やさずに分かりやすい資料を作成することを心がけています。 初心者の視点を忘れない 自分が慣れてしまっている内容でも、毎年のレクチャー中に思わぬ質問が出ることがあります。これは、私にとっては当たり前でも、初めての人にはわかりにくい部分があるためです。そうしたフィードバックを忘れずに、資料を日々校正し直していきたいと思います。 スムーズなスライドチェック スライドが完成した後には、必ず読み手の視点で見直し、スムーズに読み取れるかを確認します。もし読み取りづらい場合は、矢印、配色、メッセージ、配置などを再検討します。また、社内外問わず良いプレゼン資料に触れる機会を活かし、コツを学んで自分のプレゼンのバリエーションを増やしていきたいです。

データ・アナリティクス入門

データ視点で学びの成果を実感

アウトプットの重要性は? 学んだことをアウトプットできる場として、最終課題やグループワークの課題に取り組むことができたのは、とても良かったです。講義を受ける前よりも、データを見る際に「何のために」「何を明確にするのか」「どのデータとの比較を行うのか」という視点を持てるようになりました。このような視点を持てるようになったことが、個々の学びが自分の成長に結びついていると感じています。 振り返りの重要性とは? しかし、全講義を通して何を学んだのかと問われた際に、すぐに言葉が出てこなかったのは振り返りの重要性を改めて実感させられました。研修や知識をインプットした後に、そのまま放っておくのではなく、自分が何を学んだのかを振り返る時間をきちんと取ることが大切だと感じました。 学びの定着に必要なことは? また、目的意識を持つことがインプットとアウトプットの質を向上させると感じました。迷った時こそ「何を目的にこの仕事をしているのか」に立ち返ることが大切です。そして、何を学んだのかを人に話したり、紙に書いたりして振り返りを行うようにすること、自分の言葉でインプットした内容をまとめ人に伝えて意見をもらうことが、学びの定着に繋がると実感しました。

データ・アナリティクス入門

仮説が拓く学びの扉

仮説の基本って何? 仮説とは、論点や不明点に対する仮の答えを示すものであり、結論の仮説はある論点に対する仮の答え、問題解決の仮説は具体的な問題を解決するための仮の答えとなります。これらは時間軸に沿って中身が変化する点に注意が必要です。 複数仮説は必要? また、仮説は複数立てるべきものであり、決め打ちするのではなく、異なる切り口から幅広く考えることが求められます。仮説同士には網羅性を持たせ、あらゆる視点からの検討を行うことが大切です。 どの指標を選ぶ? 比較するためには、何を比較の指標とするかを意識的に選びながらデータを収集することが必要です。具体的な比較対象を定めることで、より精度の高い検証が可能になります。 仮説で解決できる? また、問題解決の場面では仮説が重要な役割を果たします。例えば、ある商品の売上が伸び悩んでいる場合、新規顧客獲得のためのさまざまな仮説を元に幅広いデータを収集し、その中から最適な答えを探し出すといった方法が考えられます。 なぜ仮説が求められる? 仮説が求められる場面とは、論点や問題が複雑で一律の答えを出しにくい場合や、現状の状況を打破するために新たな視点が必要な時と言えるでしょう。
AIコーチング導線バナー

「時間 × 大切」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right