クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

ナノ単科で開く知の扉

ライブ授業の意義は? ライブ授業では、これまで学んできた内容を復習しながら、分析のプロセスを再確認することができ、知識がよりしっかりと定着したと実感しました。 演習で何を再確認? 演習では、ストーリーを持って分析を進める方法や、仮説に対する検証方法、そして平均値だけでなくそのばらつきに着目する必要性について再確認できました。 グループの発見は? また、グループワークでは、他の受講生の多様な視点を通じて新たな気づきを得るとともに、自分自身の考えをさらに深めることができました。 学びを言葉にできますか? 改めて、学んだことを言語化し、自分事として捉えることが知識の定着に大変重要であると感じました。 経営分析の心得は? 会社の経営状況を分析する際は、自分なりの仮説を立て、ストーリーを意識しながら課題解決のステップを踏むことが必要だと再認識しました。 データ活用の極意は? また、データの活用においては、まずは既存のデータを基本とし、情報が不足する場合には自らデータを集めることを心がけ、アウトプットのイメージを持つことが大切だと学びました。 知識定着の秘訣は? 短期間で学んだ知識はすぐに忘れてしまいがちです。業務で実際に活用し、継続的にアウトプットするほか、書籍などでの学習を続けることで知識の定着を図りたいと思います。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

データ・アナリティクス入門

仮説で磨く未来の仕事力

なぜ比較が必要? 分析の本質は比較にあるという考え方を、このコースを通じて実感しました。さまざまなデータを客観的に捉えることで、意味のある仮説を立て、問題解決に導くことができると学びました。 どの過程を重視? また、データ分析における問題解決のプロセスを、what、where、why、howといった各フェーズごとに練習できた点も印象的でした。それぞれのステップを意識することで、闇雲にデータを扱うのではなく、明確な方向性を持った意思決定がしやすいと感じました。 どうやって加工する? さらに、代表値の算出やグラフ化といった各種加工方法にも挑戦しました。多くの知見を得られたものの、引き続き練習を重ね、よりスムーズに扱えるようになりたいと考えています。 どう変わる職場? 職場においては、事業戦略の立案を担う立場であるため、事業計画や財務諸表といったデータを迅速に読み取り、上司やチームと共に議論できるようになることが目標です。その結果、仕事の幅が広がり、事業戦略に大きく貢献できると確信しています。 なぜ幅広い視点? そのためにも、さまざまなデータの切り口を洗い出し、仮説思考をさらに研ぎ澄ます必要があると感じました。業界に限定せず、幅広い知識や興味を持つことで、実践的なスキルが向上することを実感しています。

クリティカルシンキング入門

イシュー発見で未来を拓く学び

イシューはどう見抜く? 課題解決を進めるためには、まずイシューを特定することが重要です。これは、課題に対して最適かつ迅速な解決策を導くための基本であり、どの取り組みが最も効果的に課題を解決できるかを明確にするためです。具体的には、データを分解してイシューの特定を容易にし、内部環境と外部環境を分析することで、課題の本質を正確に把握する必要があります。さらに、イシューを問いの形にし、具体的かつ一貫して検討する点にも留意することが大切です。 IT戦略はどう考える? 学んだ手法とその解決方法を、自社業務と顧客先業務の双方に活かすことができると感じています。自社業務では、IT戦略を考える上で、どの領域に投資するかを提案することを目的とします。まず、自社の売上データを分解し、内部・外部環境を分析することで、ビジネスインパクトの大きい領域を特定します。その上で、従来のIT導入を促す戦略ではなく、顧客企業の利益向上を目的とした戦略を検討するための問いを立てたいと考えています。 業務効率改善はどう進む? 一方、顧客先業務においては、業務効率化を提案することが目的です。具体的には、システム検証業務において最も時間がかかる工程を確認し、どのタスクを削減できるかという問いを設定することで、より効率的な業務改善に繋げることができると考えます。

クリティカルシンキング入門

目的がひらく学びの扉

目的の明確化とは? まず、目的―つまりイシュー―を明確にすることが重要です。目的を設定したら、その達成に向けて常に問い続け、関係者と共有することで、目標に向かって着実に進めると感じました。また、収集したデータについては、さまざまな視点からどの部分に着目するべきかを見極め、それをわかりやすいスライドにまとめる際には、流れや強調ポイントを工夫することが効果的です。こうした取り組みは、自分自身の考えを整理するだけでなく、周囲にも本来の目的や課題を正確に伝える手段になると思います。 アイデアはどう広げる? さらに、アイデア出しと資料作成の両面でこの方法が役立ちました。まず、アイデア出しでは、顧客が抱える課題に対して複数の解決策を検討し、その中から最良の方針を選んでいます。従来はあまり深く考えずに進めていましたが、今回改めて目的を共有し、コストや難易度といった観点からも評価することで、顧客が納得できる提案を導くことができました。 資料整理はなぜ大切? また、伝えたい情報が多いと、資料が雑然として他者に正しく伝わらないことがありました。そのため、本当に伝えたい内容を明確に定め、資料でも強調することで、話し手と聞き手の認識のずれをなくす努力が、共通の方向性を作り出し、協力して課題解決に取り組む上で非常に有効だと感じました。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

クリティカルシンキング入門

問いが導く学びの実感

6週間の振り返りは? 6週間で学んだ内容には記憶の濃淡がありましたが、短時間で一気に復習できた点は大きな収穫と感じています。講義で示されたように「問いから始める」ことの重要性を再認識し、その問いの設定がその後の行動やアウトプットに大きく影響することを痛感しました。また、グループワークに参加しなかったものの、「知識のインプットだけでは成果に結びつかず、自己満足に陥る」という点が胸に深く響きました。 問いの価値を感じる? 相手や仕事内容に関わらず、与えられたデータや情報を盲目的に受け止めるのではなく、「問いから始める」、「問いを残す」、「問いを共有する」という姿勢を常に心がけたいと考えています。また、人に伝える際には、受け手の視点に立った資料の構成や図解、適切な日本語表現が重要であり、こうした工夫をアウトプットに反映させることが求められると感じています。 成果をどう創るか? 知識のインプットだけでは十分な成果に繋がらないため、学んだことを効果的にアウトプットできる仕組みの構築が必要です。個人で完結するタスクにおいては生成AIを活用したフィードバックサイクルを確立し、他者とのやり取りが発生する場合には、最終アウトプットを提示する前に同僚との説明や意見交換を行うようなタスク計画や会議設計を進めていきたいと思います。
AIコーチング導線バナー

「本 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right