クリティカルシンキング入門

振り返りから始まる新たな挑戦

思考力はどう育む? 知識のインプット、アウトプット、他者からのフィードバック、そして振り返りというサイクルが、成果に繋がる思考力を育む重要なプロセスであると改めて実感しました。普段の生活では意識的にクリティカルシンキングに取り組む動機付けが難しいですが、このトレーニングの繰り返しにより、当たり前のように思考結果をアウトプットできるようになりたいと思います。 修了は新たな出発? 本講座の修了はゴールではなく、むしろ新しいスタートラインに立ったと感じています。年間評価面談では、目標達成に至らなかったメンバーとも「イシューは何か」という視点で一緒に考え、今後の改善につなげたいと考えています。 問いはどう捉える? また、来期に向けては「問いを残す」ことと「問いの共有」を重視する予定です。組織として共通の「問い」を定めた後、課会で使用する資料の冒頭にテンプレートとして掲示し、毎回全員が確認できる仕組みづくりに取り組みます。 評価をどう見直す? まずは、自分自身の年間評価に対するイシューを検討します。強引に仮説を立て、必要なデータを集め、複数の切り口から結果を分析することで、来期には目標達成へ向けたしっかりとした下準備を整えていきます。

クリティカルシンキング入門

グラフ選びで伝える魔法

適切なグラフの選び方は? グラフの活用法について、まず何よりも重要なのは適切なグラフの種類を選ぶことだと実感しました。グラフの種類を誤ると、本来伝えたかった内容が正確に伝わらなくなる恐れがあります。単にデータを視覚化するだけではなく、どの部分を強調するか、メッセージや全体の流れとどう整合性をとるかという視点が大切だと気づかされました。 グラフ効果の見極め方は? また、データの推移や変化を示すために、数字を羅列するだけでなくグラフ化することで、一目瞭然に情報を伝えられる点も大きな学びでした。これまであまり意識してこなかった部分であったため、今後は数年分のデータを用いたグラフ作成に挑戦し、より大きく変化が見えるような工夫をしていきたいと思います。同時に、グラフのタイトルの付け方にも改善の余地があると感じています。 実践提案の工夫は? 今回得た知見は、次回作成する提案資料にも活かしていきたいと考えています。さらに、相手に内容をしっかり読んでもらうための工夫は、メールなどの日常のコミュニケーションでも重要です。たとえば、メールの件名や資料の冒頭部分、タイトルの付け方などに工夫を凝らすことで、伝えたい情報がより効果的に届くと実感しました。

クリティカルシンキング入門

データの本質を引き出す視点の磨き方

データの解像度を上げるには? 目の前にあるデータを単に見るだけでなく、それを加工し、グラフなどで視覚化し、さまざまな切り口で分解することで、データの本質的な意味を理解することができると感じました。このように解像度を上げることで、データが持つ真の価値を引き出すことができます。ただし、自分にとって都合のいい結論に導くためだけに分解して終わらせず、他の切り口がないか、結果に漏れや重複がないかを常に疑う姿勢を持つことが重要です。 事業計画に活かすデータ分析 こうしたアプローチは、事業計画や月次報告などで数字を扱う際に特に効果的だと考えます。数字をただそのまま見るのではなく、複数の視点で分解することによってデータを正確に捉えることができ、その結果、本当の問題やボトルネックが浮き彫りになり、効果的な対策を講じることが可能になるでしょう。 新たな分析視点をどう加える? 事業計画の策定や月次報告の際には、以下の点を意識して取り組みたいと考えています。まず、数字を羅列するのではなく、視覚化して表現することで新たな気づきを得る。そして、これまでに使ったことのない新たな切り口を加えることにより、テンプレートにはない分析を行い、さらなる洞察を得ることを目指します。

データ・アナリティクス入門

分けて比べる!分析の真髄

4段階は何を示す? 4段階の仮説→検証→改善策立案を、具体例を交えて説明していただき、各段階での重要なポイントが明確になりました。自己流や独学で試行してきた私にとって、とてもありがたく、有意義な時間となりました。 分け比べで何が分かる? 初回から印象に残ったのは「分けて比べる」という考え方です。繰り返し実践することで、分析の本質を実感できるようになりました。 データ選択はどう考える? また、社内で適切なデータを選び出す際には、データが目指すべき姿を示しているのか、あるいはデータ自体が何を表しているのかをしっかりと見極め、指標として活用する重要性を感じました。眺めるだけでなく、常に目的意識を持ってデータに向き合うことが大切です。 自社データ整備はどう? まずは自社データの整理を行い、そこからカテゴライズやインデックス化を推進し、目的別にすぐ利用できる状態を整えたいと考えています。また、データの整え方や代表値の種類、グラフ化、ピボットテーブルの加工方法など、基礎的な手法を部内にレクチャーすることで、自分自身の理解不足や弱点を洗い出し、互いに教え合いながら、数ヶ月後にはみんなが同じ目線で分析結果を議論できる環境を作り上げたいと思います。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

クリティカルシンキング入門

問いで切り拓く未来

正しい問いは何? 問いから始めることの大切さを学びました。問いの内容によってその後の考え方は大きく異なるため、正しい問いを設定することが非常に重要です。また、設定した問いが後で忘れられがちであるため、常に問いを意識し続ける必要があります。問いを共有しなければ、議論がうまくまとまらないという点も意識しなければなりません。 どうやって問いを共有する? たとえば、マーケティングでは、まず何を問いとするのかを明確に設定し、メンバーとその問いを共有することが大切です。こうすることで、問いを忘れずに一貫した内容で実践することが可能になります。同様に、会議をファシリテートする際も問いを意識することで、議論が脱線した場合に素早く軌道修正できると感じました。 思考の偏りにどう向き合う? また、今回の学びを通じて、仕事でクリティカルシンキングを意識的に使用し、身につけることの重要性を再認識しました。日本語を正しく使い、データを分かりやすく伝えるとともに、問いから始める姿勢を業務に積極的に活用するよう努めています。そして、自分の思考が偏っている可能性を常に認識し、特に問いの設定についてさまざまな視点から考えられるよう心がけることが今後の課題だと感じました。

クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

クリティカルシンキング入門

チームで紡ぐ課題解決の知恵

根本解決の問いは? イシューを明確にし、チームと共有しながら常に問い続ける必要性を改めて感じました。さまざまな角度から物事を分解することで、根本的な解決策を探ることが重要であり、その際、できることとできないこと、また優先順位を決めることが問題解決につながると実感しました。 議論の迷いは何? ミーティングでは、チームのイシューを合わせるのが難しくなる場面(具体的な話題に偏ったり、別のイシューに話が逸れる場合)が何度もありました。こうした状況を踏まえ、イシューを見失わないよう適宜わかりやすい形で提示し、イシューの出し方についても壮大になりすぎていないか、またわかりやすいかを意識してチームメンバーとすり合わせを行うことが大切だと感じました。 共有の工夫はどう? 今後は、イシューを特定しチームと共有できるよう、起こっている事象をより明確に説明できる方法を準備していきたいと思います。具体的な手段としては、事象を分解(MECEなどの視点やデータ分析を活用)し、わかりやすい言葉で伝える取り組みを進めていきます。また、相手に情報を探させることなく、必要な資料を整えた上で、常にイシューを意識したミーティングや会話を実現するよう努めます。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

クリティカルシンキング入門

切り口が導く成長のヒント

本質に迫る方法は? 分解を行うことで、新たな気付きや発見につながると感じています。全体像を把握した上で、MECEの原則に沿いながら、目的別、変数別、プロセス別などさまざまな切り口で分類してみると、物事の本質に迫ることができるのです。 切り口の工夫は? たとえ思うような気付きが得られなくても、それは失敗ではなく、「この切り口ではうまくいかなかった」という気付きにつながります。こうした試行錯誤を積み重ねることで、より効果的な分解方法を見つけ出すことができると考えています。 戦略はどう立てる? 自分の業務においては、売上向上を実現するために、どの顧客にどのようなメッセージを届けるかという視点で戦略を立てています。また、競合他社の動向を分析する際にも、地域特性や顧客の属性、背景など、複数の角度からデータを整理し、より具体的な傾向を把握するよう努めています。 多角的分析は? 常に物事を多角的な視点で分解し、MECEを意識して取り組むことで、さまざまな側面から物事を見る力が養われると実感しています。データを得た際には、失敗を恐れずに多様な切り口から分析を行い、そのプロセスの中で常に新たな気付きや成長につなげていきたいと思います。

「本 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right