データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

データ・アナリティクス入門

仮説で磨く未来の仕事力

なぜ比較が必要? 分析の本質は比較にあるという考え方を、このコースを通じて実感しました。さまざまなデータを客観的に捉えることで、意味のある仮説を立て、問題解決に導くことができると学びました。 どの過程を重視? また、データ分析における問題解決のプロセスを、what、where、why、howといった各フェーズごとに練習できた点も印象的でした。それぞれのステップを意識することで、闇雲にデータを扱うのではなく、明確な方向性を持った意思決定がしやすいと感じました。 どうやって加工する? さらに、代表値の算出やグラフ化といった各種加工方法にも挑戦しました。多くの知見を得られたものの、引き続き練習を重ね、よりスムーズに扱えるようになりたいと考えています。 どう変わる職場? 職場においては、事業戦略の立案を担う立場であるため、事業計画や財務諸表といったデータを迅速に読み取り、上司やチームと共に議論できるようになることが目標です。その結果、仕事の幅が広がり、事業戦略に大きく貢献できると確信しています。 なぜ幅広い視点? そのためにも、さまざまなデータの切り口を洗い出し、仮説思考をさらに研ぎ澄ます必要があると感じました。業界に限定せず、幅広い知識や興味を持つことで、実践的なスキルが向上することを実感しています。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

クリティカルシンキング入門

問いが導く学びの実感

6週間の振り返りは? 6週間で学んだ内容には記憶の濃淡がありましたが、短時間で一気に復習できた点は大きな収穫と感じています。講義で示されたように「問いから始める」ことの重要性を再認識し、その問いの設定がその後の行動やアウトプットに大きく影響することを痛感しました。また、グループワークに参加しなかったものの、「知識のインプットだけでは成果に結びつかず、自己満足に陥る」という点が胸に深く響きました。 問いの価値を感じる? 相手や仕事内容に関わらず、与えられたデータや情報を盲目的に受け止めるのではなく、「問いから始める」、「問いを残す」、「問いを共有する」という姿勢を常に心がけたいと考えています。また、人に伝える際には、受け手の視点に立った資料の構成や図解、適切な日本語表現が重要であり、こうした工夫をアウトプットに反映させることが求められると感じています。 成果をどう創るか? 知識のインプットだけでは十分な成果に繋がらないため、学んだことを効果的にアウトプットできる仕組みの構築が必要です。個人で完結するタスクにおいては生成AIを活用したフィードバックサイクルを確立し、他者とのやり取りが発生する場合には、最終アウトプットを提示する前に同僚との説明や意見交換を行うようなタスク計画や会議設計を進めていきたいと思います。

データ・アナリティクス入門

仮説とデータで挑む本質探求

対概念をどう理解する? 「対概念」を活用し、仮説を検証する際は、まず「当社の戦略が原因である」と「戦略以外の要因が原因である」との両面から疑い、根拠を明らかにすることが求められます。 A/Bテストの注意点は? A/Bテストを実施する場合、前提条件を統一することが不可欠です。施策の要素を増やしすぎると、原因と結果の関係が不明瞭になるため、各施策は1つずつ実行するのが適切です。 仮説の再検証は? 現在は、大量のデータから分析し仮説を抽出、その結果を基に施策を検討するプロセスが行われています。しかし、原因に関する仮説設定とその再分析のフェーズが不足しているため、仮説と分析を繰り返すプロセスをより一層実施する必要があります。 比較検討の基本は? また、ABテストの前提条件は「Apple To Apple」を基本とした比較が原則です。この考え方を意識して、施策間の比較検討を行い、効果の正確な判断を下すことが重要です。 今後の分析アプローチは? 今後は、大量データからの分析と仮説抽出は現状通り行いながらも、フレームワークを活用して幅広い仮説を立案し、必要な分析を追加することで、各仮説の更なる深堀りを実施します。比較検討の際は、要素を正確に抜き出し、必ずApple To Appleの条件で検討することが大切です。

データ・アナリティクス入門

問題解決の新たな視点を得る学びの旅

解決へのプロセスをどう進めるか? 今回の講義を通じて、問題解決における「What、Where、Why、How」の各要素に分けて進めることの重要性を再認識しました。特に、平均値を見る際に「ばらつき」という視点が抜け落ちやすいことに気づけたことは大きな収穫です。ばらつきを確認することで、新たな気づきや次の問いに繋がることがあるため、これを自身の思考の癖として意識的に取り入れていきたいと思います。 データ分析はどう活用すべき? また、データ分析の活用については、会社業績の分析に役立てていきたいと考えています。各要素をもとにして思考を整理し、比較をギャップとして描き出す際には視覚的にグラフも活用します。さらに、考えの幅を広げるためのフレームワーク(3C・4P)を、幅を広げるだけでなく、様々な場面で応用できるように意識して使うことで、新たな気づきや問いにも繋げていきたいと思います。 比較分析はどのように進化する? 自身の役割としては、バックオフィス化を進めることに加え、会社業績の分析資料の作りこみも進めています。Q2の考えを柱として、基本的な比較においても、前期・前月比以外に施設間比較や競合の数値を集めての比較、さらに売上の分解(ロジックツリー)なども行い、自社のマーケティング施策の検討に繋げていきたいと考えています。

「本 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right