クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

クリティカルシンキング入門

チームで紡ぐ課題解決の知恵

根本解決の問いは? イシューを明確にし、チームと共有しながら常に問い続ける必要性を改めて感じました。さまざまな角度から物事を分解することで、根本的な解決策を探ることが重要であり、その際、できることとできないこと、また優先順位を決めることが問題解決につながると実感しました。 議論の迷いは何? ミーティングでは、チームのイシューを合わせるのが難しくなる場面(具体的な話題に偏ったり、別のイシューに話が逸れる場合)が何度もありました。こうした状況を踏まえ、イシューを見失わないよう適宜わかりやすい形で提示し、イシューの出し方についても壮大になりすぎていないか、またわかりやすいかを意識してチームメンバーとすり合わせを行うことが大切だと感じました。 共有の工夫はどう? 今後は、イシューを特定しチームと共有できるよう、起こっている事象をより明確に説明できる方法を準備していきたいと思います。具体的な手段としては、事象を分解(MECEなどの視点やデータ分析を活用)し、わかりやすい言葉で伝える取り組みを進めていきます。また、相手に情報を探させることなく、必要な資料を整えた上で、常にイシューを意識したミーティングや会話を実現するよう努めます。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

クリティカルシンキング入門

デジタルツール活用で効率アップした話

オンライン学習のメリットは? 私はオンライン学習サービス「ナノ単科」を受講して、非常に有意義な時間を過ごすことができました。この講座では、最新のビジネス知識やスキルが学べるだけでなく、実際に業務に応用できる実践的な内容が豊富に含まれていました。具体的には、**デジタルツールの活用法**や**データ分析の基本原則**など、仕事に直結する知識が多く、業務効率の向上に役立っています。 ストレスフリーな学び方とは? 講義はオンライン形式なので、自分の都合に合わせて学習を進められる点が良かったです。また、テキストの内容がわかりやすく、動画講義も見やすい構成でストレスなく学べました。 業務への応用で得た成果は? さらに、ナノ単科を通じて得た知識を業務に活かすことで、自分自身のスキルアップを感じることができました。講義内容を実際の業務課題に応用する際の具体的なアプローチ方法も紹介されており、実務との結びつきが非常に強い点も評価できます。 このように、ナノ単科は自分のペースで学びながら、実務に直結するスキルを身につけられる優れたオンライン学習サービスだと思います。今後も継続的に利用して、さらなるスキルアップを目指したいと考えています。

クリティカルシンキング入門

学びが深まるスライド作成の秘訣

スライドの見せ方は? 社内資料の作成では、スライドを作成する際のポイントに注意することが重要です。特に、どのようにデータを見せるかに工夫を凝らし、帯グラフ、円グラフ、折れ線グラフなど、適切な形式を選んで見やすく提示することが求められます。 構成配置の意味は? また、スライドにはタイトル、本文、グラフ、アイコンなどが関連性を持って配置されている必要があります。特に、キーとなるメッセージを明確に伝えるため、ピラミッドストラクチャーを用いると効果的です。この点は、前回の学びとも関連しています。 マニュアルはどう進める? さらに、マニュアルを作成する際も、ただ情報を羅列するのではなく、ポイントを押さえながら進めることに留意しましょう。資料やマニュアルがどのような会議で、誰に向けて作成されるのかを意識し、それに対して、受け手がどのような状況で何に困り、何を達成したいのかをイメージしながら情報を整理すると良いでしょう。 資料見直しの工夫は? 作成した資料は、色々な立場に立って見直し、どのように受け取られるかを考慮することが望ましいです。これにより、より効果的で受け入れられやすい資料に仕上げることができます。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

データ・アナリティクス入門

基礎定着から実務戦略への挑戦

ライブやグループの難点は? WEEK6のライブ授業では、WEEK1からの振り返りができたものの、まだ基本的な知識が十分に定着していないと感じました。グループワークで自分の意見を述べる際、思いついたことをうまく言葉にできず苦労した場面もありました。「分析は比較なり」や「視覚的にデータの効果的な見せ方」といった考え方の重要性を再認識し、基本的な知識の定着と実務での活用を継続して、熟練度を高めていきたいと思います。 分析と戦略はどう? 私は現在、グループ全体および各店舗のデータ分析や戦略策定を担当しており、来年度の計画立案の時期に入っています。今回の学びを最大限に活用し、戦略立案や目標設定に反映させるとともに、各店舗でのデータ収集、分析、そしてそのデータに基づく戦略立案に生かしていく所存です。 次の学びはどう進む? 今後は、データアナリティクス入門で学んだ知識をしっかり定着させるため、「定量分析の教科書」を活用して理解を深め、実務での活用を通じて実践力を向上させていきます。また、4月から受講するクリティカルシンキング入門を通して、客観的かつ多角的、論理的な思考力を養い、データ分析や戦略立案に役立てたいと考えています。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

データ・アナリティクス入門

フレームワークを使いこなしデータ分析力を高める方法

フレームワークの活用法をどう高める? コンサルティング業務全般で役立つ3Cや4Pのフレームワークは、日々の業務で活用しています。しかし、反論を排除するデータまで踏み込めていない場面があるのが現状です。現状の問題や課題を批判的に捉える視点を持ち続け、本質的な課題や仮説・回答を考え抜くことを諦めない姿勢が重要です。 データソリューションの資料作りにおけるポイントは? 現在作成中のデータソリューションサービスの営業資料には、データ分析の手法やその需要性を盛り込みます。フレームワークは組み合わせて使うことで本質に近づくことができるため、シャープな推論ができる頭の使い方が求められます。そのため、フレームワークを複数組み合わせて使う力を向上させることが重要です。 フレームワークの判断力をどう養う? 具体的には、以下を実行します。まずは分析でよく使うフレームワークを単体で使いこなせるようにします。その上で、単体で使いこなせるフレームワークの数を増やします。そして、組み合わせることによって効果を増幅させるパターンを覚えます。常にどのフレームワークを組み合わせるのが最適かを考え、最適なパターンを選べるよう、判断力を養っていきます。

アカウンティング入門

アカウンティングで広がる新たな視点

アカウンティングの理解を深めるには? アカウンティングの重要性や、事業活動の意味、事業活動を定量化する指標について、今まで漠然と理解していたことがしっかりと言語化され、体系的に整理されました。これにより、頭の中にフレームが形成され、とてもすっきりとした気持ちです。このフレームに情報や知識を加え、自分の中で考えを整理していくのが非常に楽しみです。 自社のP/LとB/Sをどう活用する? まず、自社のP/LとB/Sを読み解けるようになり、俯瞰的な視点で自部署や他部署の事業活動を再考したいと考えています。その後、競合他社のP/LやB/Sを分析し、自社と比較することで、改善や成長のポイントを見つけたいです。 理解を深めるためのアプローチは? 本講座を通じて、すべての内容をしっかりと理解し、疑問点がない状態で修了したいと考えています。その上で、自社のデータを読み解く際に生じる不明点については、上司に相談したり、質問の機会を作りつつ理解を深めたいと思います。競合他社の分析に関しては、特定の企業をピックアップし、理解を深めたいです。また、アカウンティングに詳しい周りの方々に声をかけ、比較検討会の実施を提案したいと考えています。

「本 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right