データ・アナリティクス入門

分析が楽しくなる仮説の立て方と実践例

適切な比較対象を選定するには? 分析の本質は比較であり、適切な比較対象を選定することが重要だと学びました。また、問題解決には、「What, Where, Why, How」の4つのステップがあることも理解しました。今後は、ただやみくもに分析をするのではなく、当たり前ではありますが、仮説をきちんと立ててから実施することを心がけていきたいと思います。 秋の実証実験で何を活かすか? 秋から始まる実証実験の結果を、今回学んだ内容を活かして分析していきます。特にアンケート設計を実施する必要があるため、事前に仮説を立て、実証実験で得たいデータが得られるような設計にしていこうと思います。 アンケート設計の考慮点は? 9月中にはアンケート設計を行います。実証の目的や今後に繋げていくために欲しい情報などをよく考えた上で設計を行うことを心がけます。また、今回学んだ知識を忘れないためにも、業務の中で意識的に使用していくことを心がけていきたいと思います。

データ・アナリティクス入門

外れ値も味方にする分析学

外れ値は見逃す? 物事の状況を平均値だけで捉えると、外れ値が見落とされる可能性があることを再認識しました。今後は状況に応じて、加重平均などほかの指標も使い分けることで、状況を正確に把握し、適切な課題設定ができるよう実務でも意識して取り組んでいきたいと考えています。 多様な平均手法は? たとえば、複数製品の売上分析では、直近数年間の成長率を示す場合に幾何平均を用いたり、製品ごとの優先順位や活動量を反映させた分析には加重平均を使用するなど、さまざまな手法を状況に合わせて活用できると感じました。また、分析結果の提示には適切なグラフを用い、周囲への効果的なアウトプットを目指す一連の流れが形成できると実感しています。 標準偏差は役立つ? さらに、標準偏差は大量のデータを扱う際に有用だと印象づけられましたが、どの程度のデータ量であれば効果的に機能するのか、また他の分析手法との使い分けについても、今後さらに掘り下げて考察してみたいと思います。

データ・アナリティクス入門

3C×4Pで解く故障改善の秘密

複数視点って何が肝心? 修理データの分析では、仮説構築の際に一面的な見方にとらわれず、複数の視点から網羅的に考えることが不可欠です。今回学んだ3C(顧客・自社・競合)や4P(製品・価格・流通・販促)のフレームワークを活用することで、故障原因や改善のポイントを多角的に把握できるようになりました。 故障原因はどう見える? たとえば、顧客視点では使用環境や年齢層による故障傾向が考えられる一方、自社視点では特定の機種や部品の設計上の課題に着目できます。また、競合視点では他社製品との比較による違いを仮説にすることも可能です。さらに、製品ごとの故障率や価格帯、販売地域ごとの傾向にも注目し、それらを関連付けながら仮説を検証していくことが求められます。 課題解決の鍵は何? このように、フレームワークを効果的に活用しながら問題解決に取り組むことで、修理データに潜む課題をより具体的かつ明確に把握することができるようになりました。

データ・アナリティクス入門

幾何平均で見える新世界

なぜ異常値が出る? これまで、代表値や単純平均、加重平均は業務で使用してきましたが、幾何平均、中央値、標準偏差は財務業務では使う機会がほとんどありませんでした。特に、売上の成長率を計算する際に、幾何平均を用いなければ異常値が算出されてしまう点には驚きを覚えました。このことについて、なぜそのような結果になるのか、また今後どのように活用できるかを、再度整理する必要があると感じています。 今後の計算はどうする? また、これまで主に財務データを扱ってきたため、幾何平均や中央値、標準偏差の計算・分析を実施する経験がほとんどありませんでした。そこで、まずは顧客の年齢層データを対象に、中央値や標準偏差を計算し、その分析結果を社内で共有する予定です。今後は、財務業務に応用できるデータとして、幾何平均、中央値、標準偏差が有効に活用できる分野を探り、エクセル関数を用いた計算方法についても調査し、実際に計算していきたいと考えています。

データ・アナリティクス入門

代表値で読み解くデータの真実

どの代表値を選ぶ? 今週の学習では、さまざまな代表値について学びました。平均値には単純平均だけでなく、加重平均、幾何平均、中央値などがあり、分析の目的に応じた適切な選択が必要です。また、データのばらつきを示す標準偏差についても意識するようになりました。製造業の生産部門で用いられる3σなども、この標準偏差の考え方に基づいた手法です。どの指標が何を示すのかを常に意識しながら、代表値やグラフの適切な使用を心がけたいと思います。 単純平均の限界は? これまでのデータ分析では、主に単純平均を利用してきましたが、特異値が存在する場合には単純平均の使用が適さないことも認識していました。そのため、どの数字が最適なのかは必ずしも明確ではありませんでした。今回学んだ加重平均や幾何平均なども併せて活用し、より多角的な分析を進めていきたいと考えています。単純平均以外の代表値を使用する具体的なケースがあれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

仮説思考が導く学びの未来

分析と仮説のバランスは? データ分析の軸として「分析は比較である」だけでなく、仮説思考についても学びました。仮説を立てる際、バイアスによる思考の偏りが影響する可能性があるため、一度他者の意見を聴くなど、客観的な視点を取り入れてバイアスを抑える工夫が重要だと感じました。 データ収集はどうする? データ収集については、オープンデータの活用も有用ですが、世の中に存在しないデータは自分で集めることが大切だと学びました。確かにこの作業は大変ですが、地道な取り組みが結果として大きな意味を持つと実感しました。 報告資料の工夫は? また、月次報告の資料作成に関しては、現在提示している数値とグラフの表現方法を見直す必要性を感じました。具体的には、数値に関しては棒グラフ、比率については円グラフを使用するなど、視覚的な情報の伝え方を多様化し、リソースの過不足など新たな課題が明らかになるかどうかを検討したいと思います。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

データ・アナリティクス入門

平均で解く成長のヒント

各平均の意味は? 今回の学習では、平均の種類について再確認できた点が非常に印象的でした。単純平均だけではなく、幾何平均や加重平均といった、数字の根拠となるデータや分布の理解が求められる手法について、より深く考える機会となりました。 成長率の計り方は? また、期間全体の成長率を表現する方法が実践可能であることを知り、これまで感じていた疑問が解消されました。具体的には、自身の業務において商品のサイズ構成比や部署の成長率を算出する際、全体の加重平均や過去数年の傾向を示すための幾何平均が有用であると感じました。 実践スキルの磨き方は? とはいえ、数式自体は難しく感じたため、今後はエクセルを使用した計算方法など、より実践的なアウトプットスキルを磨く必要があると思っています。プレゼンテーションや説明の際に、根拠となる平均値を具体的なグラフなどで示せるよう、引き続き学びを深めていきたいと考えています。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

データ・アナリティクス入門

データ分析とプレゼンの質を上げるコツを学ぶ

分析における比較の重要性を学ぶ 分析とは比較であることを学びました。データを扱う際にはサンプリングバイアスに注意し、何と何を比較するか、そして目的に沿った分析を行うための問いが重要であると理解しました。すぐに飛びつかず、まず一呼吸おいてからデータを取り扱うことが大切です。 土地選定にはどんなデータが必要? 土地の選定に際しては、エリアや距離といった比較可能なデータを蓄積し、入居率や地代との関係を探ることが必要だと感じました。また、社内説明資料を作成する際には、データの表現方法としてグラフや図をどう表現するかを学んでいきたいです。 事業組成には説得力向上が必須 事業組成の中では、なぜその事業を行うべきか、比較軸を立てた上で理解しやすいデータやグラフを使用し、プレゼン資料の説明力を高めることが必要です。これにより、事業化の打率を向上させることで部署や関係各所に貢献できるでしょう。

クリティカルシンキング入門

心に響く!視覚で磨く伝える力

効果的な視覚情報の秘訣は? 情報を伝える上で、視覚的な情報の作り方が非常に重要であると改めて感じました。伝え方は環境や状況によって異なるため、目的に応じた最適な見せ方を選べるよう、視覚情報の表現方法の幅を広げる必要があります。 自分の視点で見る資料は? 普段目にする資料は、「自分ならどのように作るか」という視点で観察するよう心がけています。また、文章作成時には、アイキャッチの活用、文章の硬軟のバランス、そして読みやすい体裁の3点を常に意識し、読み手の立場に立って内容を確認する習慣を続けています。 プレゼン成功の秘策は? さらに、8月22日に他部署の行動変化を促すためのプレゼンテーションを実施する予定です。資料全体の構成や使用するデータの選定において、目的と対象に合わせた最適な見せ方を意識し、作成内容が理解促進に効果的かどうかを事前に第三者の意見を取り入れて確認する予定です。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。
AIコーチング導線バナー

「データ × 使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right