クリティカルシンキング入門

分かりやすい文章作りと効果的な説明術の実践

主語と述語の重要性とは? 今週は以下の3点を学びました。 まず、主語と述語を意識して文章を読むことと書くことが重要であるという点です。これにより、他の方に文章をきちんと理解してもらえるだけでなく、自分自身の文章もわかりやすくなります。 なぜ説明する理由を考える? 次に、どのような働きかけをする理由を考え、それを説明することの重要性です。これにより、相手に合わせた適切な説明ができるようになります。 スムーズな理由説明のコツ 最後に、物事の理由を述べる際に、自身の話を支える「柱」となるテーマを見つけ、そこから必要な理由を整理することです。これによって、思いつきで理由を述べることなく、適切な理由をすべて伝えることができます。 これらの学びを活かし、部署メンバーや他部署の方へ説明を行う際の想定問答の準備を行います。また、説明後の質問についても事前に想定することで、様々な疑問に対処できるようにしたいと思います。 学んだことをどう実践する? 今後は、具体的なプロジェクトや業務の中でこの学びを実践するつもりです。例えば、各事業部人事への説明の準備にこの手法を活用し、簡単な質問にも対応できるよう準備を進めます。他にも、キャリア採用の流れにおける実施事項や面接スキルの整理にもこの学びを活かせると考えています。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

データ・アナリティクス入門

データ分析で見つけた成功への鍵

分析の基本は比較にあり? 「分析とは比較である」ということが、今まで感覚的に行っていた私にとって、必須であると改めて理解しました。また、多くの人の前でプレゼンテーションを行うため、データを分析する際には、まず「仮説」を構築した上でデータ加工に取り組んでいました。そのため、明確な目的や主張のない分析は行っていませんでしたが、一方で期待していた比較結果が得られなかった場合には、仮説を素直に見直すことの重要性を認識しました。 新しい業務への挑戦 普段の業務では、「分析とは比較である」という意識が習慣化しています。しかし、これから新しい業務に挑むにあたっても、この「比較」を意識し続けたいと考えています。特に、生存者バイアスのかかったデータに基づく業務になる可能性があるため、失われているデータとの比較を心がけたいと考えています。 成功と失敗事例の見極め あるプロジェクトでは協力業者の選定が多数必要となりますが、彼らが持参するのは成功事例が多いと予想されます。そのため、成功事例の裏に隠れている失敗事例を手に入れ、成功事例だけに基づいた「比較」に陥らないよう注意したいと思っています。直感的に考えたことを「仮説」とし、その後、生存者バイアスを避けた適切なデータを比較・分析し、プロジェクトの成功を目指したいと考えます。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

リーダーシップ・キャリアビジョン入門

リーダーシップとコミュニケーションの実践例

キャリアをどう理解する? 「キャリア」や「リーダー」とは何か、という疑問が本講座を通じて少しずつ解明されてきました。 ロールプレイからの学びとは? LIVE授業でのロールプレイでは、上司役としてフィードバックを行う際、相手にとって望ましくない結果をどう伝えるかが課題となりました。仕事は常に「対:人」であり、相手の価値観、得手・不得手、仕事の仕方はすべて一人ひとり違います。そのため、相手をよく知り、よく見ることが重要だと実感しました。今後も相手に応じた適切な支援を心がけていきたいと思います。 エンゲージメント向上の手法は? 私は、メンバーとの日常的な関わりだけでなく、全社的なエンゲージメント向上プロジェクトにも参加しています。そのため、リーダーの関わりがどのようにメンバーのモチベーションに影響するか、日々のコミュニケーションがいかに重要かを強く認識しています。これらの気づきを社内で共有し、組織の活性化に貢献していきたいと考えています。 メンバーの対話をどう促進する? 関わるメンバー(上司も含めて)と対話し、互いの価値観をオープンにできる機会と雰囲気を創ることが重要です。メンバーの経験や価値観に応じて適切な支援ができるよう、今回の学びを振り返りながらリーダーシップを実践していきたいと思います。

マーケティング入門

ターゲットを捉える戦略の秘密

セグメントは正しい? セグメントについては、事前に持っていた認識が正しかったと感じています。市場評価基準(6R)の考え方を理解し、一人の中にも状況や場面によって多様な個性があることから、ターゲティングを行う際には背景やシーンを明確にする重要性を実感しました。 訴求はシンプル? ポジショニングに関しては、訴求ポイントを2つに絞えるという考え方が有効だと学びました。実際、ポジショニング後も顧客からどのように見えているかを客観的に把握し、状況の変化を常に観察する必要があると感じました。 強みは複合的? また、自社の強みを複合的に掛け合わせる可能性についても考えました。これまで紹介事業で培ったサポート力を、転職活動中の方だけでなく、前工程・後工程や転職市場以外の分野でも活かすことができないか、検討する価値があると捉えています。 誰に届ける? さらに、新ブランドを立ち上げる際の訴求ポイントの整理にも注目しました。社員それぞれが感じる自社サービスの強みを洗い出し、現状のターゲットのペルソナをより具体的に言語化することで、「誰に向けたサービスなのか」を再設定し、その上で強みのどの部分が当てはまるかを検討していきます。こうした取り組みは、SNSのショート動画などのコンテンツ作成にも応用できると考えています。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

クリティカルシンキング入門

資料作成で成果を生む!振り返りのコツ

どんなグラフで伝える? 伝えたい内容を効果的に視覚化するために、グラフを活用することが有効です。また、文字のフォントや色にも注意を払うことで、受け取り手に具体的なイメージを連想させることができます。優れたスライドは、情報をすぐに見つけられるように工夫されているべきです。 相手に伝わる方法は? 資料作成の目的は「相手に伝わること」であり、視覚的な要素だけでなく、話し方や抑揚といった聴覚にも訴えかけることが重要だと感じました。スライドやグラフを作る目的を忘れ、単に作成することが目標になってしまうと、生産性の低下や情報過多につながる可能性があります。この点を部下にも慎重に伝えたいです。 資料内容は再確認? 報告や方針の資料作成では、状況や受け手に応じて文面に変化を持たせることが求められます。社内向け資料の場合、チェックを怠ってしまいがちですが、受け手への配慮を忘れずにセルフチェックを行うことが必要です。特に、「何を伝えたいのか」をしっかりと確認することが重要です。 シンプルさはどう保つ? グラフやスライドの数が増えがちなので、シンプルさを心がけつつ具体性を持たせ、必要に応じて付録を活用することを意識したいです。これらを踏まえて、より良い、伝わりやすい資料作成を目指していきます。

リーダーシップ・キャリアビジョン入門

フィードバックで成長を促すコツ

フィードバックの心得は? フィードバックを行う際には、慎重な心構えが求められます。特に評価が低い場合には、納得感を持ってもらうことが重要です。フィードバックを受けた相手のモチベーションを維持し、未来に向けた前向きな気持ちを引き出すためには、相手の心情に配慮した言葉選びと表情が大切です。また、具体的な事実や数字を提示することで、現在の達成度を明確にし、納得感を高めます。 低評価はどう伝える? 低評価を伝える際には、批判するのではなく、成長を促すスタンスを心掛けましょう。フィードバック後には、受け手が今後取り組むべきことを明確に理解し、前向きな気持ちで面談を終えられるよう目指すことが重要です。自己評価と異なる意見を伝える際も、アプローチ次第で結果を大きく変えることができると信じて、メンバーと向き合いましょう。 年上部下への伝え方は? 経験豊富な年上の部下を持つ場合には、大きなハレーションを避けるため、アプローチに一層注意を払う必要があります。しかし、リーダーとしての役割を果たし、組織や顧客のために必要なことは率直に伝えることも求められます。相手へのリスペクトを忘れず、組織の発展に貢献するために何をすべきか、しっかりと考えを持ちながら部下とのコミュニケーションや1on1面談に臨みたいと考えています。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

「行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right