クリティカルシンキング入門

イシュー特定で業務効率が劇的に向上

基礎知識の学びと課題発見は? ここまでに基礎知識やデータの読み解き、思考方法を学びました。課題としてイシューを特定するためには、問いから始めることが重要だと認識しましたが、まだ経験から来る判断をしているとも感じました。これを改善するために、常に意識し振り返りを行うことで、習慣化を目指します。 目的とゴールの意識が業務を変える? まず、イシューを特定し、目的とゴールを意識することが重要です。具体的には以下の点で活用範囲があります。 1. **業務の設計** - 目的とゴール、そしてあるべき姿を常に意識します。問いから始めることで、すぐに要点だけに意識を向けるのではなく、全体を俯瞰して考えることが大切です。 2. **人的なミス** - 仕組みや設計に問題がないのか、そもそも対策が必要かなど、広い視野で本質的な原因を考えるようにします。 3. **会議** - 何を決定する会議かを明確にし、イシューが何であるか、本質と内容がずれていないかを意識し続けます。 4. **資料作成** - イシューが何か、無駄な項目がないかを意識し、前提→結論→具体例がぶれていないかを確認しながら作成します。相手にとってのイシューや疑問をくみ取れる内容にすることが求められます。 問いから始めると否定的に捉えられる可能性もありますので、伝え方や日々の信頼残高を貯める意識を持ち続けることが重要です。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

クリティカルシンキング入門

クリティカルシンキングで未来を切り開く

クリティカル思考は何? 講師によれば、クリティカルシンキングとは「問い」と「答え」であるとのことでした。また、他の受講生がコメントしたように、クリティカルシンキングはロジックツリーやMECEといった技術にとどまらず、「それで良いのか」と常に自己批判のマインドを持つことが重要だと分かりました。この2つを知るだけでも、受講した意味があったと感じています。 イシューの本質は? これまでも「なぜ」を繰り返すことや、他人の考えをすぐに取捨選択しないよう意識してきましたが、今後はもっとイシューを意識して考えていきたいと思います。また、作成するグラフやデータの切り口についても、欲しい結果ありきになっていることに気づいたので、様々な角度からシミュレーションを行うように心がけたいです。 全体をどう捉える? 行動を起こす前には、前提や全体を俯瞰して捉えることが重要です。そして、着地点を想像せずに的確な「問い」を設定し、ピラミッドストラクチャー、ロジックツリー、MECE、多方面からのグラフ化などを活用しながら、常にイシューを意識して一貫性を保ちつつ目標に到達することを目指します。 伝え方はどうする? また、相手に伝える際には、どのように伝えるかを考え、効果的なコミュニケーションを図ることで、チームとして成果を生み出したいと考えています。このプロセスを常に行うことで、無意識に実践できるように習得したいです。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

戦略思考入門

学びを深める!フレームワーク活用法

学びの根拠はどう? 今までの学習内容を振り返りながら総合演習を行うことで、学びが一層深まりました。何か施策を行う際には、「現状が○○であるからこの施策を行うべき」「自社の資源に○○があるので他事業にも転用できる」といった根拠が必要です。この根拠は、現状の深い分析を通じて得られるものであると、改めて実感しています。 現状考察はどうなってる? 目先のゴールにのみ焦点を当てがちですが、現状の考察を怠らないよう心がけたいと思います。また、ビジネスフレームワークを活用することで、現状の情報を効率的に整理できることを体感しました。今後は、活用できる場面を増やし、効果的な情報整理を実現したいです。 部署の未来はどう? 自部署においても、先の目標やロードマップを描くと同時に、現状分析を網羅的に行うことの重要性を感じています。今後、新規事業を展開する予定があるため、現状を大局的な視点から整理し、価値や独自性の把握、範囲の経済を活かせるかどうかの考察が必要となります。 分析の手法は何? 現状分析においては、フレームワークを活用していこうと考えています。例えば、VRIO分析を使って自部署の価値や独自性を把握し、SWOT分析で内部・外部環境要因を整理する、そしてPEST分析でマクロ視点から情報を整理します。フレームワークにはまだ慣れていないため、まずは手を動かして情報を分析・整理する力をつけていきたいと思います。

クリティカルシンキング入門

ナノ単科で見つけた学びの一歩

問題本質は何? 思考にはそれぞれクセや偏りがあるという前提のもと、問いと答えを繰り返すことで正しく課題を抽出する手法が有効です。こうしたサイクルを意識することで、問題の本質に迫ることができます。 共有はどう役立つ? また、仕事においては、自ら問いを残しその問いを共有することが重要です。これにより、より説得力のある意思決定へとつながり、組織全体で課題に向き合う姿勢が生まれます。 論理を磨くには? さらに、クリティカルシンキングを向上させるためには、頭の使い方を理解すること、他者と積極的にディスカッションすること、そして反復トレーニングを行うことの3つの要素が欠かせません。これらを意識することで、思考の精度を高めることができます。 根拠に迫る判断は? 担当のタスクや課題に取り組む際は、答えを決めつけるのではなく、正しい問いとそれに対する根拠に基づいた答えを導き出し、自分の意見を明確にすることが求められます。また、チーム内では課題管理表や進捗管理表を活用し、検討事項を漏れなく記録することで、いつでも説明できるような体制を整えることも大切です。 考えを伝える力は? 最後に、頭の中で何となく考えるのではなく、自分の思考を日本語の文章として言語化し、共有しながらディスカッションを重ね、その解像度を上げてブラッシュアップすることが、課題やタスクを前に進めるための鍵となります。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

リーダーシップ・キャリアビジョン入門

フィードバックで成長する自分を見つけよう

フィードバックの大事な点は? フィードバックには以下の点が重要であると改めて認識しました。これらは、メンバーへのフィードバックに限らず、自分自身の内省にも関係していると感じます。また、形を変える必要があるかもしれませんが、上司との状況共有や相談にも役立てられる部分があるようです。 - 具体的な事実に基づいて伝えられているか。 - メンバーの苦労に共感を示しているか。 - こちらの過ちや環境・周囲の不足があった場合に、率直に非を認めているか。 - 良かった点や改善が必要な点を具体的に指摘しているか。 - 一緒に進める姿勢を示し、フォローしようとしているか。 - メンバーに自ら振り返りを促しているか。そのために問いかけているか。 自分の内省はどう? 自分自身の振り返りを行う際には、以下の点を重視したいと考えています。具体的な事実に基づいて伝えることや、良かった点と改善が必要な点を具体的に指摘すること、そしてメンバーに自ら振り返りをさせるための問いかけを大切にします。 感情はどう扱う? 振り返りをしっかりと行うには、感情を一旦脇に置き、具体的な事実の把握が重要です。また、自分の改善点やよかった点を整理し、主体性を持つことを重視したいです。方針が違うと指摘され、やりたいことから離れた場合に主体性を失いがちな時もありますが、その気持ちに負けず、次にできることや必要な行動を考え進めていきたいと考えています。

データ・アナリティクス入門

問題解決力の高め方がわかる最高のストーリー

問題解決手順をどう進める? 問題解決のプロセスは、「What→Where→Why→How」の順で進めることが重要です。特に「How」の段階では、課題に対して複数の仮説を立て、それに基づいて具体的な対策(打ち手)を検討します。この際、効果、コスト、スピードなどの枠組みを用いると視覚化しやすくなります。 効果を測定するための方法は? 効果を測る方法としては、ABテストが有効です。ランダムにユーザーを対象としてテストを行うことで、より効果的な対策を実証できます。 打ち手を評価する際の注意点は? また、打ち手を検討する際には、決定要素を洗い出し、各項目に対してメリットとデメリットを評価します。仮説をもとに打ち手を考える際も、常に比較する意識を持つことが大切です。必要であれば、再度ABテストを行い、効果が高い対策を実施します。 プロジェクトで重視すべきポイントは? プロジェクトにおける課題解決業務においては、次のポイントを重視します。まず問題解決のプロセスを意識して、問題の所在とその本質的な要因を明確にします。その上で具体的な打ち手を考え、その効果を検証します。この状況でABテストが必要であれば、実施します。 新企画の決定基準はどう定める? さらに、新しい企画や打ち手を考える時は、決定の基準となる枠組みを明確にし、比較を行います。これにより、異なる打ち手の粒度を均一にし、論点を具体化します。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

戦略思考入門

経済性の法則を活用するビジネス知識

先人の知恵は役立つ? ビジネスには、先人たちの知恵によるビジネスの法則があり、それを正しく理解し、活用することが重要です。 コスト低減の秘密は? 事業戦略を考える際には、自社の競争力としてコストを重視します。コスト低減の戦略として、事業の経済性があります。事業の経済性には、規模の経済(スケールメリット)、習熟効果(経験曲線)、範囲の経済(シナジー)、ネットワークの経済性があります。これらの経済性を効果的に活用して戦略を策定するためには、それぞれのメカニズムを正しく理解し、前提条件についても把握しておく必要があります。前提が合わない場合、逆にコストが増大し、不経済状態に陥る可能性があります。 習熟効果の使い道は? 経済性を実践する面では、習熟効果が有効です。新たな業務を行う際には、その業務手順を整理しておくことで、次回の工数削減につながります。また、範囲の経済を利用して、既存製品の技術を基に新製品を開発することで、開発コストを低減できます。 学びをどう活かす? 今回学んだ経済性は、業務経験の中で漠然と理解し活用してきたものでしたが、先人たちの知恵と合わせて一般化され、法則としてまとめられたものを理解することで、日々の業務から大きな戦略にまで活用できるようになると感じています。法則をより深く理解するためにも実践が必要であり、日々の業務の中で実際に取り組むことで理解を深めていきたいと思います。

「行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right