データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

戦略思考入門

フレームワークで広がる戦略の視点

戦略構築で見落としは? 戦略を構築する際に、フレームワークを活用することで見落としを減らせると感じています。代表的なフレームワークとして、3C分析、SWOT分析、バリューチェーン分析などがあります。分析が終わった後は、「整合」を重視して戦略を立てることが重要です。全社的に考えることが求められ、一部門のみで整合がとれているだけでは必ずしも良い戦略とは言えないことがあります。また、短期的に成果を上げても、中期的には見直しが必要な場合もあるため、短期的施策として実施期間を設定したり、見直しの指標を設けたりすることが大切です。 会社状況をどう整理? これまで、自分で会社全体の状況を整理する機会がなかったため、まずは3CとSWOT分析から始めてみたいと考えています。その際、各部門ごとに発表される戦略や目標に関する資料を活用し、それを元に自分なりに1つの資料としてまとめて分析します。この全体像の中から、自分のチームとして何ができるかを考える予定です。 チーム貢献、どう考える? 会社全体および各部門の戦略を分析し、自分のチームがどのように貢献できるかを考えています。再来週には社員全体で今期の中間報告会が予定されているため、それまでに分析を完了し、チームとして事業に貢献できる部分を明確にしたいと考えています。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

クリティカルシンキング入門

データ分析で見える新たな発見と改善法

データをどう視覚化する? データを分析する際には、今ある数字に一手間かけることが重要です。ただ数字を並べるだけでなく、グラフや表に変換すると新しい発見が生まれます。また、比率に変換することで別の角度からデータを見ることができ、さらなる洞察が得られます。 分解の基準は何が有効? データを分解する際には、人、時間、手段などの基準で区切ると分かりやすくなります。例えば、月次や年次の売上分析、SNSのインサイト分析など、数字が明確に示されるものだけでなく、業務の効率化や成果が出なかった場合の原因分析にも役立ちます。 問題の特定と解決策のステップ まず、起きた問題に対して「もれなくダブりなく」を意識し、全体を大きく分けて定義します。その際には、層別分解、因数分解、プロセス分解を用いることが有効です。次に、出てきた項目をさらに分解し、どこが問題点なのかを数字や表で明確にします。そうすることで、問題の箇所を特定しやすくなります。問題が特定できたら、なぜそうなっているのかを考えます。そして、どう解決すれば良いのかを分析から導き出し、仮説を立ててトライアンドエラーを繰り返し、最適な解決策を見つけます。 これらの手法を念頭に置くことで、データ分析がより効果的になり、業務の改善や効率化にもつながると感じました。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

データ・アナリティクス入門

数字を超える、比較の妙技

比較と目的はどう考える? 分析において、「比較」と「目的への立ち返り」の大切さを改めて感じました。何かしらの数値をグラフ化して報告するだけでは、かえって分析した気分になってしまい、実際は単なる数字の結果報告に過ぎなかったと認識しています。今後は、目の前の数字だけではなく、適切な比較対象を設定し、分析結果としてしっかり報告できるよう努めたいと考えています。 上司の反応はなぜ? 直近の業務では、状況報告を上司に行った際、好意的な反応を得られず、簡単に取得できる情報だけに依存し、見栄えの良いグラフや表を作成するだけの報告になっていたことを痛感しました。単に数値を並べるだけでなく、それぞれの情報をきちんと比較し、その内容から次の対応や施策を検討できるような報告に改善する必要性を感じています。 次の一手はどうする? そのため、今後の取り組みとして以下の点を意識していきます。 まず、分析の目的を再度明確にすること。 次に、比較する項目や内容について、上司の意見や生成AIのサポートを活用しながら見直しを行うこと。 さらに、定量的な分析だけでなく、定性的な分析も取り入れられるよう検討を進めること。 そして、最終的には目的に沿った次の対応策が検討できるような報告をまとめることを目標とします。

アカウンティング入門

半間比が明かす企業戦略の秘密

半間比の効果は? 今週の学習では、PL(損益計算書)の半間比の見方を通して、各店舗や企業がどのように価値を創造しているかを理解できた点が非常に印象的でした。具体的には、ある業態では高コストながら高単価を狙い、また別の業態では気軽さを武器に購買数を増やすという違いがあり、半間比を比較することで経営方針の違いが明確になりました。数字の背後にある戦略を読み取る視点を身につけられたことが、今回の大きな収穫です。 決算書の読み方は? この学びを自分の仕事に活かすためには、まず自社の決算書やPLを正確に読み解く力を養うことが重要だと感じました。さらに、競合他社の決算書や業績資料と比較することで、自社の強みや改善点がより明確になると考えます。また、新聞や経済誌に掲載されている企業の業績記事に接する際も、PLや半間比の視点を持つことで内容の理解が深まり、現実のビジネスへの洞察が広がると実感しました。 行動に移すには? 実際の行動に移すため、まずは日常的に新聞などの経済情報に触れ、気になる企業や話題に上がる企業について、試算表やPLなどの財務情報を毎週調べるようにしていきたいと思います。こうした継続的な情報収集と分析の習慣を通して、財務の見方や経営判断に必要な視点を少しずつ身につけていけると期待しています。

データ・アナリティクス入門

問題解決へのMECE活用術

問題点の把握はどう進める? まず、問題点をきちんと把握し、理想の姿と現在の状況との差を捉えることが重要です。そのためには、物事を様々な角度から分析し、分解する必要があります。平均的に一括りで捉えると、真の問題を見逃す恐れがあります。ここで、MECE(Mutually Exclusive, Collectively Exhaustive)の原則を意識すると、要素を漏れなく重複なく分けることができ、問題の明確化から課題設定がしやすくなります。 数字の状況をどう把握する? 数字の状況や問題点を把握する際には、つい平均で語られることが多くなります。しかし、細部までしっかりと捉えた上でサマリーをすることが大切です。そして、いつでも元に戻れるように、プロセスを明確にしてツリー構造として残しておく必要があります。これを怠ると、感覚的な議論と空論の間を行き来することが多く、物事が進まない原因となります。 視点設定と情報分解の秘訣は? 数字や定量的情報で状況を表し、要素分解を行うことが鍵です。この際、視点の設定が非常に大切ですが、解決したい問題、本来の目標、最終目的を意識し、人に聞きながら自分の考えを伝える形で整理していきます。立ち戻る目的を明確にすることで、偏見がかからないように注意することも重要です。

アカウンティング入門

図と比喩で辿る学びの旅

図式化と比喩の意味は? 図式化の手法が、全体の構造を把握する上で非常に有効であることを再認識しました。また、比喩表現が記憶に基づくイメージ形成に寄与し、内容をより分かりやすくしていると実感しています。一方で、簡単な言葉でシンプルに伝える作業が、意外にも難しいと感じました。短い講義の中にも多くの学びを得られたことを実感しています。 企業財務の背景は? 今後は、関心のある企業の財務情報について、時間軸で「なぜこの結果になったのか」を考察しつつ、相対軸で良否を比較する視点を持ちたいと思います。その背景にある原因や要因を徹底的に把握し、実際のビジネスに活かすための分析を行いたいと考えています。企業で起こったさまざまな出来事や変動の中に、ひそむストーリーを感じ取ることにも挑戦したいです。 決算報告をどう読む? 具体的には、決算報告説明会の内容と決算資料を並行して検証しながら考察を深め、業界内の比較も十分に行うことで、より多角的な視点を獲得したいと思います。さらに、他者とのディスカッションを通じて、理解を深めるとともに新たな気づきを得たいです。 最後に、新聞で興味を持った企業の決算報告資料を過去3年間にわたって読み取り、長期的な視点から企業の動向や変化を捉える訓練を積みたいと考えています。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right