データ・アナリティクス入門

データ分析が変わる、伝える力の育て方

具体例が必要な場合は? 普段分析している視点が言語化されているため、他者にアウトプットする際に考え方を体系的に伝えることができました。しかし、数字に集約するだけでは伝わりづらいと感じ、数学的な話をする際には具体的な事例を出して伝える必要があると気付きました。 データの見せ方を工夫する また、社内で分析したデータの見せ方に関しても工夫が必要だと感じました。ただデータを見せるだけではなく、データから読み取ってほしいことや感じ取ってほしいことを意識して、最も伝わりやすい見せ方を検討する必要性を感じました。 レポート改善の重要性 さらに、社内で発行しているすべてのレポートについて、その目的や従業員に何を伝えたいかを再度見つめ直して言語化することが重要です。この作業を8月末までに行い、言語化した内容に基づいて、より伝わりやすい表現方法や見せ方の改善策を9月末までに検討し、試験的にレポートを作成して従業員からのフィードバックを得る予定です。 フィードバックを活用するには? 最後に、そのフィードバックに基づいてレポートの改善策をまとめ、内容に従って改善を行うことを10月末までに進める計画です。

アカウンティング入門

アカウンティングが身近に感じられる学びの6週間

どのようにアカウンティングが身近になったのか? Week1の自分とWeek6の自分を比較すると、アカウンティングがより身近に感じられるようになったことに気づきました。これは、PLやBSの基礎を身につけたおかげです。この知識を生かし、自社や競合他社、さらには異業種企業の財務三表を読み解き、分析できるようになるため、今後も学習を継続したいと考えています。 必要な知識をどう確認する? また、収支業務の年間スケジュールを確認することで、その時々に必要となる知識を把握しています。今回の講義で学んだ内容と照らし合わせて準備を進め、不足している点は自己学習により補完し続けます。最終的には、アカウンティングの専門知識を業務に使えるレベルまで高めたいと考えています。 アウトプットをどう活用する? 6週間の講義内容を復習するとともに、自己学習によるアカウンティングの学習を引き続き続けます。アウトプットとしては、自社の貸借対照表を確認し、気づいた点や疑問点をリストアップします。そのリストについて、自社内のアカウンティングに詳しい社員に聞き取りを行い、アドバイスを求めることで、自身の理解度を深めていきます。

クリティカルシンキング入門

多角的視点で課題発見!MECE活用術

項目分けの意味は? 意図的に項目を分けることで、問題が見つけやすくなると気付きました。特に、言葉の定義を明確にすること(例えば「子供」とは何を指すのか)が重要です。視点が多ければ多いほど、問題の発見が容易になり、解決策も増えてきます。しかしながら、日々の業務の慣れから、こうしたことを見落としてしまうと感じています。 経験に頼るリスクは? これまで、課題に対する解決策が自分の経験に偏っていることが多かったため、常に批判的思考を忘れず、「他に手はないだろうか?」と自問し続けたいと思っています。課題を特定する際も、経験に依存しがちなため、MECE(Mutually Exclusive, Collectively Exhaustive)を用いて視点を増やすことを意識しています。 数値分析の新発見は? PL(損益計算書)やBS(貸借対照表)を作成および分析する際には、経験に頼るだけでなく、MECEを用いて分解を行い、新たな洞察を得たいと思っています。また、新規施策を行う際にはターゲットの特定においてMECE分解と数値分析を活用し、数値的インパクトの大きい施策を立案し、実行に移していきたいです。

クリティカルシンキング入門

データ分析で見つける新しい視点

データ加工の効果的な手法とは? データ加工の手法として、合計や割合を算出するための新しい列を加えることで、傾向や特徴を明確に把握できるという利点があります。また、これをグラフ化することも効果的です。 切り口次第で変わるデータ分析 データの切り口次第で傾向や特徴は変化します。そのため、どの切り口でデータを分けるかをしっかり考えることが重要です。さらに、グラフを活用することで、分析結果を視覚的に伝達しやすくなります。 広い視点で進めるデータ分析 データ分析を行う際には、When、Who、Howといった複数の切り口からデータを分解し、分析を進める必要があります。一つの切り口に頼らず、複数の視点から考えることで、より深い分析結果を得られると考えられます。 顧客増加へのデータ分析アプローチ 顧客を増やすためのデータ分析では、これらの手法が役立ちます。データ加工や分け方に基づいた分析結果をグラフで示すことで、発表時に結果を納得してもらいやすくなるでしょう。 新たな知見をどう活かすか? 今回学んだ知見をデータ分析に活かし、様々な切り口からの付加価値のある分析を目指したいと思います。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

アカウンティング入門

P/Lが明かす企業成長の秘密

P/Lで儲けはどう見える? P/Lの構成から、企業の儲けの構造がどのように形成されるかを理解できました。事業コンセプトや経営ポリシーがP/L上に表れる点も興味深いと感じました。客回転数や客単価、材料費と売上総利益、販管費など、それぞれの項目にどのように影響があるのかがよく示されています。 講座の魅力は何? この講座は、アカウンティングの内容ながらマーケティングのような切り口も取り入れており、非常に刺激的でした。 経営分析はどう進む? 今後、企業の経営分析にこの知識を活用していきたいと考えています。業界内での相対比較に着目し、同じ市場内の自社、パートナー企業、クライアント企業、競合企業といった立場で比較しやすい指標を検討する予定です。また、過去3年から5年の推移を分析することで、変化点やその要因を把握できればと考えています。 比較で差は何? 具体的には、まず関心のある業界に焦点を当て、代表的な3社のP/Lを比較して各社の儲けの構造の違いを読み取ります。その後、決算報告資料を参照して各社の主張を確認し、さらに関連するメディアの記事を通じて有識者の評価なども調査していく予定です。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right