戦略思考入門

経済性の学びがキャリアプランに活用!

経済性の理解とは? 規模の経済性について、固定費の分散だけでなく、変動費のボリュームディスカウントも可能であることを学びました。これにより、どちらも大きなメリットがあることが理解できました。ただし、規模が大きくなりすぎて、多拠点化などの規模の不経済を引き起こしていないかを常に注意する必要があると感じました。 範囲の経済性はどう活かす? 範囲の経済性については、一見良さそうに見えるものの、資源を集中投下して効率を優先すべき時との戦略的な選択が必要であると感じました。また、範囲の経済性は人事異動の際に使えそうで、これまでの経験を他分野に活用することで組織としての成果を最大化し、個人の成長機会にもつながると考えました。 キャリアプランにどう役立つ? 自分自身のキャリアプランを考える際にも、範囲の経済性は活用できると実感しました。これまでは会社の必須入力欄に定期的に情報を入力するだけでしたが、今回の学びを機にキャリアプランシートを作成し、自分も職場のメンバーも年央の面談でそれを活用することを計画しています。これを人事異動の材料としても活用したいと考えています。

戦略思考入門

失敗談から学ぶ成功への道筋

なぜ基礎知識は必要? メカニズムを学ぶには、基礎知識と失敗談の学習が必要だと感じました。基本的には成功に至る道筋がありますが、重要なのはリスク要因をしっかりと文言化することです。成功は様々な要素と偶然が絡むことが多く、要因を完全に特定するのは困難です。しかし、失敗を経験から学ぶことは可能です。失敗した要因は特定しやすいと考えられるため、その学びは貴重です。 価格効果をどう考える? また、差別化を考える時と同様に、価格の効果性を最大化することも重要です。インフレの時代には、価格を無視した施策だけでは顧客満足を得にくいため、新規業務やBPOにおける収益化を考える際に、その知見を活用することが重要です。価格とメカニズムを深く分析し、根拠のある提案を行うことを心掛けましょう。 成功談から何を学ぶ? まずは成功者の成功談や失敗談を本から学び、知見を広げることが大切です。最近では動画でも多くの情報が得られますので、常に最新の情報をインプットし続けることが重要です。このような知見の積み重ねが、意思決定者へのプレゼンテーションや提案の質を向上させることにつながります。

データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

クリティカルシンキング入門

多角視点で見つける解決のヒント

課題分解は難しい? 現状の課題に対する対策を検討する際、まずは課題を複数の客観的な観点から分解することが有効であると気付きました。これまで自己の経験則や伝聞に頼ったために、対策が偏っているという自覚が生まれたのです。 事業検討のコツは? 自部門で新たな事業を考えるにあたり、自社の強みと弱みをさらに細かく因数分解することで、強みを活かす事業や弱みを補強する事業の検討に役立てられると感じました。また、現在の能力を十分に活かしていない業務についても、同様の視点で他の業界や分野に適用できる可能性があると考えています。 課題整理の秘訣は? さらに、課題の整理を進める際には、正しい日本語とわかりやすい可視化の手法を心掛け、上司や部下に対して明確に説明できるよう努めようと思います。具体的なアプローチとして、まず現状の問題点を洗い出し、複数ある課題に優先順位をつけながら浮き彫りにしていきます。その上で、仮説を立てながら対策案を文章化し、必要であれば数値やグラフを用いて示す方法を採っています。最終的には、これらの内容を上司にプレゼンテーションする形で共有する予定です。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

データ・アナリティクス入門

仮説からはじまる成功のヒント

どうやって最速解決する? 課題解決においては、最短かつ最適なルートでゴールに到達することが他者に対する優位性につながると考えます。そのため、場当たり的な対応や、全体をむやみに検証して無駄にコストや時間を費やすことを避けるためにも、まずは仮説を設定することが必要です。いかに精度の高い仮説を立てるかが重要であり、そのためには適切な知識、経験、そして考え方が求められます。 課題の本質は何? また、課題に取り組む際は、まず何が課題であるのかを適切に理解し、把握することが不可欠です。課題が不明確であれば、得られる答えも曖昧になってしまうからです。その上、対象となるビジネスなどのドメイン知識や過去の経験に基づき、適切な仮説設定に注力していきたいと考えています。 経験は十分伝わる? すでに実践している部分もありますが、さらなる精度向上とスキルアップを図るために、フレームワークと呼ばれる考え方のツールを導入して、より高い精度を目指していく所存です。今回学んだ3Cや4Pを基本とし、今後さらに他の手法も取り入れながら、知識と経験を積み重ねていきたいと思います。

データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

クリティカルシンキング入門

学びを深める!未来のための思考法

知識だけでは足りない? ライブ授業の録画を見て、改めて学びが深まったと感じました。特に最後に先生が言った、「知識を得るだけでは駄目で、自分の頭で考えなければ身につかない。とはいえ、学びを止めてしまうと独断に陥る」という言葉が印象的でした。忙しさを理由に学ぶ機会を持たなければ、自分の経験だけでしか考えられなくなるのではないかと、少し不安を感じました。 本当の学びは何? 改めて学ぶことの重要性を考える機会となりました。 問いは何で始める? 課題の改善策を考える際には、まず問いを立て、問いを忘れないように広い視野を持って検討することが大切だと考えます。対象によって検討内容は変わるかもしれませんが、問いや軸を忘れずに思考することが重要です。 チーム方針はどう? 来年度のチームの基本方針を検討しています。再来年度の変革に向けて、何を変え、何を変えないかを精査する必要があります。よりモチベーション高く取り組めるよう、目標設定や教育機会(研修など)についても今までのやり方を踏襲するだけでなく、広い視野で多角的に検討していきたいと考えています。

クリティカルシンキング入門

振り返りで気づく「もう1人の自分」

感覚と経験の再評価は? 私は職業柄、論理的に考えているつもりでしたが、講義を通じて実際には感覚や経験に頼って判断していることが多いことに気づくことができました。この気づきを得られたことは良かったと思っています。また、「もう1人の自分でチェックする」という方法は、どの場面でも活用できると考えているので、これを常に意識しながら業務に取り組みたいと思います。 ITを活用した提案力をどう高める? ITを活用した顧客への提案や課題解決の方法でも、ロジックツリーやMECEといった手法は非常に有効だと感じました。これらを意識して取り組むことで、頭の中を整理するだけでなく、設計資料や提案資料を作成する際にも説得力を高められると思います。 問題解決力の向上の鍵は? 日々の業務では様々な問題が発生しますが、ロジックツリーを用いることで課題を全体的かつ階層的に把握し、本質的な課題を特定しようとしています。研修を通して、自分自身の制約や偏った考え方に気づかされたことを教訓に、視点・視座・視野を意識し、もう1人の自分で常にチェックすることを心がけたいです。

「経験」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right