データ・アナリティクス入門

現象を超えて問題の根本に向き合う方法

問題原因をどう特定する? 問題の原因を明らかにするためには、プロセスを細かく分解することが重要です。そして解決策を検討する際には、複数の選択肢を洗い出し、その根拠に基づいて絞り込むことが求められます。 幅広く解決策を模索するには? 私の癖として問題と認識している点は、現象に焦点を当ててしまうことです。このため、なぜそれが問題なのかをさらに分解整理し、その構造を明らかにすることが必要です。その上で、解決策を思いつきや経験で狭めてしまわず、幅広く検討し、なぜそうするのが良いのかを考え実行し、分析することが重要であると感じました。 業務改善に必要なフローは? 具体的な業務としては、説明資料の作成や土地の探索、収支検討などが挙げられます。これらの部分で改善を図り、成果に結びつけるためには、業務フローや仕事上のプロセスを整理・分解し、成果に結びつく打ち手を検討し実行した上で、さらに改善すべき点を検討することが不可欠です。 データ活用の重要性とは? また、データを収集する経験を深めることも重要です。日頃から意識的にデータを取ることで、どのようにデータが業務に効果を与えるかを考えることができます。説明資料を作成する際には、作り込みすぎずにスライドのパターンをいくつか作成し、A/Bテストの要領で部内や課内でフィードバックテストを行うことも推奨されます。

デザイン思考入門

ナノ単科で見つけた自分だけの宝物

初期プロトをどう改善? プロトタイプは、まずAIを活用してビジュアル要素を加えた形でアウトプットし、フィードバックを受けやすい状態に仕上げます。特に初期アイデアについては、ポジティブな視点で意見を重ね、アイデアをさらに豊かに膨らませることを重視します。 伝えるポイントは何? 全体のまとめとしては、次のポイントが挙げられます。まず、視覚的なプロトタイピングを通じて効果的に伝えること。次に、顧客の行動を細かく観察し、体験価値を最大化すること。そして、共感、課題定義、発想、試作、テストのプロセスを繰り返すことで、アイデアを具体的にブラッシュアップしていきます。 意見重ねる理由は? 特に初期アイデアのフィードバックにあたっては、最初にフィードバックのルールを確認した上で、常にポジティブに意見を重ねる方法を採ります。具体的には、スキャンパー法の各項目とその例を活用しながら「発想」の部分を再度掘り下げることで、アイデアの幅を広げる工夫が取り入れられています。 進行体制はどう築く? また、プロトタイプのフィードバックはブラッシュアップを目的としているため、その趣旨を明確に説明した上で、専用のルールスライドを準備し進行します。同じファイル内に発想用のスライドも収め、すぐに参照できるよう整備しておくことで、スムーズかつ効率的なフィードバック体制を構築しています。

クリティカルシンキング入門

ピラミッドが導く説得の秘訣

相手に伝わる方法は? 他人に自分の主張を伝え、行動を促すために必要なスキルを学びました。特に、ビジネスの現場では、相手の立場に立ってわかりやすく伝えることが何よりも重要であると実感しました。その第一歩として、主語や述語を意識したアウトプットの基本を学びました。 論理の重ね方は? また、自分の主張を裏付ける論理を構造化する手法にも注目しました。すぐに結論に飛びつくのではなく、複数の切り口から論理を重ねることで、説得力や理解しやすさが向上することを体験しました。 仮説の組み立ては? さらに、不確実性の高い新規事業の推進においては、仮説を立てる際にピラミッドストラクチャーを意識することが有効だと感じました。まず答えのない課題を明確に特定し、数字を用いた分析や整理を行いながら論理を組み立てていくことの重要性を再認識しました。こうしたプロセスにおける、論理の柱をしっかり考える手間が、後の認識のずれや意思決定の遅延を防ぐ鍵であると考えています。 報告会の改善は? これからは、毎週の事業報告会で使用するフォーマットをピラミッドストラクチャー型に変更し、主張の根拠となる論理を明確に伝える工夫を続けていきます。また、部下が発信する意見に対しても、構造化されたアウトプットを意識したコミュニケーションを心がけ、より正確で効果的な情報伝達を目指していきたいと思います。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

クリティカルシンキング入門

相手に響く資料作りへの挑戦

伝えたいメッセージは? 「相手に何を伝えたいのか」を明確に決め、その目的や内容に合わせたメッセージを考えることが重要であると学びました。これにより、スライドの構成やデザイン、いわゆる「How」の部分を工夫することが求められます。これまでは、このような手順を意識せずにスライドを作っていたため、相手に伝わりにくい資料になっていたことを痛感しました。今後はこの学びを実践し、より分かりやすく、効果的な資料作成を心がけたいと思います。 効果的な資料とは? 資料作成においては積極的に改善していきたいです。特に人事という職種では、会社の施策を幹部や従業員に説明・周知する機会が多く、受け手が理解しやすい構成と明確な意図が求められます。その際、適切な表現や強調ポイントの正確な表現、情報量の適正化を常に自己検証しながら作成することが重要だと感じました。今後はこれらを意識し、より効果的でわかりやすい資料の作成を目指します。 アウトラインを見直す? 資料作成時には、まず「伝えたい目的」と「受け手の視点」を明確にします。そして、資料のアウトラインを作成し、色分けやフォントサイズの調整といった方法で強調すべきポイントを視覚的に目立たせる工夫を施します。最終的には、発信前に受け手の視点で「伝えたい意図が正しく伝わるか」「表現が適切か」を確認し、必要に応じて修正を行います。

マーケティング入門

顧客の声が教えてくれた本質

学びの深さは何ですか? WEEK01からの学びを再確認するために、総合演習に臨む機会となり、これまでの知識や経験を振り返ることができた。動画学習を通して、他社のユニークな差別化事例から新たな視点を学び、非常に勉強になったと感じる。 顧客ニーズは見えてますか? 「顧客の声に敏感になる」という点も大切だと実感した。ただし、顧客の意見をそのまま拾って改善に結び付けるのではなく、その声の奥に隠れた本当のニーズを見極めることが必要だと感じた。 社内の本当の要望は? バックオフィス業務においては、社内メンバーが本当に求めているポイントを正確に理解し、彼らが抱えるペインポイントを明らかにすることが求められる。多くの場合、社内メンバーは過去の経験則や自身の専門性、価値を高める活動に偏りがちなため、彼らの価値向上に直結するアプローチを考えることが重要である。 伝え方の効果は十分ですか? また、最新の考え方や知識、スキルをそのまま伝えるのではなく、新たな機能や取り組みがどれだけ効果的で役立つかを、実例を交えながら説明する方法が求められる。社内アンケートで得られる「顧客の声」は、そのままではなく、一歩踏み込んで「顧客の心理」を理解することにつなげる必要がある。その上で、真に求められているスキルや知識を整理し、適切にアウトプットしていくことが重要だと考える。

リーダーシップ・キャリアビジョン入門

リーダー経験がなくてもできる工夫

リーダーシップには何が必要? リーダーとして考慮すべき点は、自分自身の感覚に頼ることが多かったと感じました。しかし、事業とメンバーの2軸から判断し、環境やメンバーの状況に応じた適切な声掛け方法を考えるフレームワークは、かかわり方を検討するうえで最低限必要な内容であると認識しました。もし、事業やメンバーの理解において知識が不足していると感じた場合は、しっかりとキャッチアップを行うべきだと考えています。 メンバーを動かすには? 私自身はリーダーではないのですが、メンバーに動いてもらいたいときに躊躇してしまうことがあります。そこで、事業とメンバーの2軸から考慮し、環境とメンバーの状況に応じた声掛けの方法を工夫することで、自信をもって依頼できるようになりたいと考えています。今週はその考え方を意識し、1週間メンバーとのやり取りを行います。これにより、自分のクセや改善点に気づき、改善の機会にしたいと思います。 目標設定と役割分担における課題 具体的には、メンバーに動いてもらうためには、ある程度指示型に近い対応が必要だと思いました。私は上長ではないため直接的な指示はできませんが、お願いしたい内容を明確に文書化し、それについて議論する必要があると考えています。それは、現在の環境では目標が不明確で、メンバー間の役割分担に関するコンフリクトが多いからです。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

データ・アナリティクス入門

問題解決への新しいアプローチを発見

問題解決の第一歩はどこ? 問題解決の4つのプロセスを学びました。起きたことをwhat・where・why・howに分けて考えると、普段ではwhereやwhyについては何となく意識しているものの、その「何となく」から思いつきでhowに至ってしまうことが多いと感じました。whatについてはほとんど考えられていないように思います。また、現状とあるべき姿のギャップを言葉にしようとしても、うまく出てこないことに気づかされました。これは自分がいかに漠然とした考えで問題に向き合っていたかの証拠だと感じました。 定量的分析を習慣化すべき? 目の前のことに一喜一憂せず、日々の問題には定量的な分析を行うことを習慣づけたいと思います。たとえば、キャンペーンの商品分析やチームメンバーの業務量の適正化なども、定量的に分解して考えると有効です。私たちの基本業務である当事者トラブルの解決にも、この方法が応用できるかもしれません。 ギャップをどう埋める? 最初に取り組むべきは、現状とあるべき姿、またはありたい姿が個々人で漠然としてまとまっていない点の改善です。そのギャップを埋めることが大切です。問題解決の話し合いの場ではまずwhatを意識し、周囲との合意を図ることが重要です。ここを丁寧に行った後に、物事の分解・整理を学んだ通りに進めていきたいと思います。

「改善 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right