データ・アナリティクス入門

オンライン手続き改善のデータ分析方法

データの見せ方は? 分析の基本は比較であり、どのデータをどのように加工するとわかりやすいかを考えながら進めることが重要です。データにはさまざまな種類があり、それぞれに応じた加工やグラフの見せ方があります。データ分析を始めるにあたっては、「目的」の確認や「仮説」の設定とその検証が欠かせません。 オンライン離脱はなぜ? 私たちのチームでは、お客様に対して紙の手続きではなく、ウェブサイトでのオンライン手続きを推奨しています。しかし、オンライン手続きを行っているお客様がどの段階で離脱しているのか、また、紙を取り寄せるお客様の属性や動機がどのようなものかを理解し、分析する必要があります。 改善点の見極めは? 具体的には、オンラインで離脱しているページやそのユーザーの属性、さらに紙手続きを行っている方々の属性や動機に関するデータを収集し、オンライン手続き率を向上させるためのボトルネックを特定することが目指すべきゴールです。仮説を立てながら慎重にデータを分析し、検証するプロセスを通じて、この課題に取り組んでいきたいと思っています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

クリティカルシンキング入門

データ分析で見える!戦略立案の新視点

データ分解の重要性とは? データを分解することで、事象の原因について仮説を立てやすくなると理解しました。ただし、分解方法を誤ると要因が見えにくくなる場合があるため、複数のパターンで試行して最適な方法を見つける必要があります。また、分解には漏れなく重複なく全体を分解していくことが重要です。さらに、異なる切り口で分解することで、要因を特定しやすくなることも判明しました。 顧客分析で見つかるボトルネック 新規顧客と既存顧客に分けて、受注に至るまでの各プロセスにどのようなボトルネックがあるのか分析したいと考えています。同様に、業種や規模、地域といった異なる視点からも分析を行い、どこにアプローチをすれば最大の効果が得られるか仮説を立て、実践してみたいです。 効果的な営業戦略を立案するには? 営業戦略を立案する際には、まず業務プロセスを見直し、データを取得できるようにする必要があります。アプローチの回数や提案の回数、対面かWebかといった各種データを分析可能にするため、業務プロセスの改善から着手する必要があることが分かりました。

データ・アナリティクス入門

ロジックツリーで問題解決!私の成功体験

問題解決のプロセスをどう進める? 問題解決のプロセスは、WHAT・WHERE・WHY・HOWの順で考えていくことが重要です。特に、WHERE・WHY・HOWを考える際にはロジックツリーを活用してMECEに分解することが有効です。分解の方法には層別分解と変数分解の二つがあります。 キャッシュフロー改善の手法は? 事業の課題に対する対策を検討する際、この手法は非常に役立ちます。例えば、「キャッシュを黒字化したい」という課題に対して問題の原因を特定することができます。ロジックツリーを用いて、営業キャッシュフローを改善するのか、投資キャッシュフローを改善するのかといった視点や、どの製品が特に原因となっているのかを特定することができると考えました。 過去の実績から何を学ぶ? キャッシュ改善(WHAT)という視点において、まずは過去の実績からどの項目に特に原因があるのかを探り、特定の製品や項目に対して大きな変化がある部分を特定したいと思いました(WHERE)。その上で、それが起きている原因を特定し、対策について検討する計画です。

アカウンティング入門

PL分析で未来を見据える方法

PL理解の重要性とは? PL(損益計算書)を理解するには、大まかな数字で概要を把握することが重要です。分析する際には、傾向の変化や相違点に注目し、それをもとに仮説を立てて検証することが学びとなりました。また、提供する価値によってPLに現れる内容が異なるため、これがどのような影響を及ぼすか、イメージを膨らませて検証することが大切だと感じました。 毎月の損益報告をどう確認する? 毎月の会社の損益報告を見る際には、まず数字から傾向を大まかに把握することを心掛けようと思います。その後、傾向に変化があるか、大きな相違点があるかを確認します。そして、もし相違点があれば、どのような事象がそれを引き起こしているのかを検証し、再発防止策を考えられるようになりたいと思います。 部門のPL分析に注力するには? また、自分の部門の損益計算書を毎月確認し、傾向や変化を分析することにも注力したいです。損益の悪化要因を詳細に分析し、傾向が見られれば、改善策を検討します。そして、それを部下と共有し、今後の利益計画に反映させたいと思っています。

戦略思考入門

戦略的思考で描く未来への道筋

戦略の本質は? 戦略というのは、目的地を明確化し、その目的地に最短距離で到達するための方法を考えることを指します。具体的には、「何をやるべきか、何をやらざるべきか」を決定し、さらにそこに独自性を加えることが重要です。この点についての学びを得ました。 未来はどう描く? 個人的な視点から考えると、今期の目標を達成するための取り組みとして、ジョブ評価シートの作成などが挙げられます。組織としては、オフィスが目指す方針や、メンバーを支援する際に戦略を活用したいと思います。特に、未来を描くことが足りないと感じているので、目標を具体的に思い描くことを意識していきたいです。 問題をどう整理? 現状の問題は、場当たり的な対応に陥ってしまうことです。これを改善するため、業務を整理し、将来を考えるための時間を確保することが必要です。計画を先延ばしにしないよう、ある程度のロードマップを描き、手を動かす前にゴールを明確にする時間を意識的に設けます。ゴールを明確にするためには、まず問いを立てることから始めることが大切です。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

データ・アナリティクス入門

効率的な資料作成で業務改善!

分析を効果的にする方法は? 分析の本質は比較にあります。具体的な要素を整理し、比較対象や基準を設けて、きちんと比較することが重要です。また、条件がそろっていない場合には想像力を働かせて補完することも必要です。 資料作成の時間短縮には? 目的を理解して分析を行うことが大切です。販売計画の部署にいる後輩たちに対して、分析の基本を踏まえたアドバイスをします。例えば、資料にグラフをたくさん載せて資料作成に時間がかかると嘆いている後輩の資料をチェックし、本来の目的は何か、仮説は何かを一つ一つ確認していくことです。 カイゼンプロジェクトの課題解決策 現在進行中のカイゼンプロジェクトでは、「資料作成に時間がかかりすぎている」「この資料作成は本当に必要か」といった課題があります。これらの問題を解決する方法の一つとして、目的をしっかり確認し、仮説を明確にしてから資料を作成するというアプローチを取り入れることが有効です。目的を明確にした上で、仮説を立て、必要な資料を作成する重要性を後輩たちに伝えることが必要です。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

データ・アナリティクス入門

分析の楽しさ!戦略と挑戦の日々

各要素をどう捉える? 分析の肝は、漏れなくダブりなく各要素を洗い出し、比較することで見えてくる事象から仮説を立てる楽しさにあると実感しました。一方で、効率的で分かりやすいツールの習得がまだ十分でないため、その点を今後解消していきたいと考えています。 売上拡大はどう実現? まず、売上拡大のための各種施策の打ち出しが必要です。また、お客様の行動を分析することでアプローチ方法の見直しが求められます。現状の自社商品の強みや弱みを把握し、適正な人員配置や営業行動計画、業務プロセスの見直しを実施するためには、関係各所のリーダーと連携することが重要です。 育成と戦略の見直しは? さらに、スタッフ育成においては、早期に戦力となっていただくための教育制度の見直しを進め、会社の方針や営業目標を浸透させる努力が必要です。加えて、マーケティング施策の見直しでは、離脱要因を特定し改善を図るとともに、他社の事例研究も欠かせません。最後に、営業戦略の再検討を行い、何が効果的であるのかを見直すことが求められます。

データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

クリティカルシンキング入門

人事評価のフィードバック術を磨く方法

伝えたい内容の柱とは? 伝えたい内容を無闇に文章化することは急ぎすぎです。何を柱として伝えたいのか、そしてその柱を支える理由は何かをまず考えるべきです。この柱と理由を洗い出し、状況に応じて最適な組み合わせを選択します。主語と述語を明確にし、簡潔に伝えたい内容を整理して文章化することが大切です。最終的に、完成した文章を俯瞰することで、相手にわかりやすい文章を作成することを学びました。 部下への効果的なフィードバックは? 部下への人事評価フィードバックを行う際には、まず部下の成果から良い点、さらに伸ばしてほしい箇所、そして改善が必要な点を柱として考えます。それぞれに対して理由付けを行い、一つ一つを簡潔に理解しやすい文章で伝えることが重要だと感じました。 人事評価コメントの整理法は? 人事評価フィードバックのコメントでは、伝えたい内容を整理せずに書いてしまうことがよくあります。そのため、文章を書き始める前に、伝えたい柱とその理由をまず整理してから文章化することが必要だと考えています。

「改善 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right