データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

戦略思考入門

日々の意識が未来を創る

全体振返りで何を感じる? 今週は全体の振り返りを行いました。本講座では、ありたい姿に向けてどのように進め、実現の確率を上げるかについて学びましたが、既に忘れかけている項目があることに気づき、日々の意識がいかに大切かを改めて感じました。 成果施策の効果は本当? 数字で成果が見込みやすい施策については、現状の取り組みが本当に効果的かどうかを再評価し、その上で必要な改善を行っていきます。一方、要員の育成など成果が数値に現れにくい施策に関しては、シナリオ作りからフレームワークを再度適用する方針を明確にして取り組むこととします。 日々の業務意識はどう? また、Q1の回答にも記載しましたが、使わなければ忘れてしまう内容に対しては、皆さんが日々どのような意識で業務に取り組んでいるのかを再確認することが重要だと考えます。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

データ・アナリティクス入門

未知の平均値に挑戦

指標の基礎はどう? これまで平均値と中央値を用いた分析は行っていましたが、加重平均、幾何平均、標準偏差といった他の指標については十分に理解していませんでした。今回、これらの指標の基礎を学ぶ中で、その重要性を実感しましたが、実際に活用するとなるとまだ課題が多いと感じています。今後は、これらの考え方をさらに深め、実践的な使い方を模索していきたいと思います。特に、経営指標として必要な幾何平均については、実データを用いて分析に挑戦する予定です。 どんな分析を試す? 自社製品の原価と営利に関する調査・分析の中で、今回学んだ幾何平均を早速活用し、過去のデータを基に営利分析を実施します。また、部門ごとの工数分析では、業務に費やす時間だけでなく、関わる人数も考慮に入れて評価し、より客観的な分析を目指します。

クリティカルシンキング入門

受講生の本音、実践の軌跡

主語と述語の関係は? 文章作成において、まず主語と述語の対応関係を明確にすることが非常に大切です。小説などでは表現の多様性が評価される一方、ビジネスの現場では状況を的確に伝えるために、この基本が欠かせません。主語と述語のずれが誤解を招くリスクを伴うため、常に正確な関係を意識して文章を組み立てる必要があります。 誰が原因を探る? さらに、どのような前後関係の中で誰がどのような問題に直面しているのか、その原因と対応策を明確に示すことが求められます。結論から述べた上で、原因や複数の対策を検討し、ピラミッドストラクチャーを活用して論理的に構造化することが重要です。このアプローチは、定例の1オン1や業務報告など、さまざまなシーンで思考を整理し、伝える内容を明確にするために非常に有効です。

データ・アナリティクス入門

実務に繋がる問題解決ストーリー

問題解決の基本は? 今回の総合演習では、「問題の明確化→問題箇所の特定→原因の分析→解決策の立案」という基本プロセスに立ち返り、学習に取り組むことができました。また、解決策を検討する際には複数の選択肢を洗い出し、それぞれの根拠をもって評価することをあらためて意識しました。とはいえ、実務で実際に取り組む際には、まだ自然に活用できていない部分もあるため、クラス終了後も学んだことを繰り返し復習する努力が必要だと感じました。 実務への活用はどう? 私の担当業務ではA/Bテストの利用が難しいと感じる一方で、今回のナノ単科を通じて知識こそが武器であると改めて実感しました。今後、活用の機会が訪れた際には、今回得た知識をしっかりと身につけ、実務に積極的に生かしていきたいと思います。

データ・アナリティクス入門

データで魅せる学びの未来

平均と偏差をどう見る? データ解析では、代表値として平均値や分布の指標である標準偏差を用い、データの傾向や特性を把握します。また、平均値以外の代表値も存在するため、目的に合わせた適切な指標の選択が求められます。 グラフ選びはどうなってる? さらに、データを可視化する際は、対象となるデータに合わせた最適なグラフを選ぶことで、情報がより分かりやすく整理されます。この基本的な解析手法は、事業性評価にも応用され、普段の業務に自然と役立てることができています。 動画グラフは新しい? また、関連動画で紹介されていたグラフの中には、以前は使用したことがなかったものもありました。そのため、必要な際にすぐにグラフが作成できるよう、日頃から練習を重ねています。

アカウンティング入門

数字が語る成功のヒミツ

成果の評価はどう? ビジネスの成果は、そのビジネスがどれだけ儲かったかで判断されると感じています。同時に、その収益性は定量的に評価しなければ正確に把握できないことが分かりました。 財務三表の使い方は? この定量評価のツールとして、P/L、B/S、C/Fからなる財務三表が有用です。P/Lは一定期間の利益を示し、B/Sは資金の使途や調達方法を明らかにします。また、C/Fは一定期間内での資金の増減を捉えています。 正しい読み解きはどう? 財務三表を正しく読み解くことで、事業の状態を具体的に把握できることが再認識できました。業務においても財務三表を活用し、分析や評価を行いながら、現状を正確に理解し次の行動に結びつけていきたいと考えています。

クリティカルシンキング入門

データが語る学びのワクワク発見

どう切り口を見極める? 数字の分析において、与えられた情報をそのまま受け取るのではなく、細かく分解し、どの切り口が有効であるかを見極める重要性を再認識しました。複数の視点でデータを分解すると、異なる結果が導かれることが印象に残っており、分析の際にはMECE(漏れなく、重複なく)を意識することが大切だと感じました。 実務はどう評価する? 実際の業務では、データ分析を行う機会は少ないものの、マーケターの提案内容を確認する際には、情報を細分化し、複数の切り口で評価する手法を取り入れています。また、トラブル対応においても、確認すべき事項がMECEになっているかを念頭に置きながら進めることで、より確実な対策を講じることができると考えています。

戦略思考入門

ROIの数字で実務を再考する

数字評価の意味は? ROIを数字で評価することで、状況が非常に理解しやすくなったと感じます。特に、技術戦略提案書などの背景構築にどのように反映できるか、実務で検討してみたいと思います。 投資対効果ってどう? 一方、ROI「投資対効果」だけで優先を決めるのは、必ずしも最適とは言えないという疑問も残りました。自身の業務については、これまで投資対効果を意識したことがなかったため、改めて工数実績から計算し、優先順位を見直す必要があると考えています。 捨てる選択はどう? また、ROIは捨てる選択を判断する際には有用だと感じた一方で、ROIのみで優先すべき項目を決めた場合に上手くいくかどうかには、やはり懸念が残りました。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

「業務 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right