マーケティング入門

論理で読み解く市場の真実

どう学ぶべき? セグメンテーション、ターゲティング、さらにターゲティングの評価基準である6Rを学んだことで、これまで感覚的に捉えていた要素を論理的に整理でき、理解が一層深まりました。 どう分析する? 実際のビジネス現場では、すでにこれらのフレームワークを取り入れている場合が多いと感じますが、新製品の投入や期待した成果が得られていない場面では、改めて基本に立ち返ることで状況を正しく分析できると実感しました。 市場はどんな? また、外資系IT製品の取り扱いに関する経験を通じて、本国で成功している製品であっても、他国や日本市場で展開する際は市場特性を再検討する必要があると改めて認識しました。市場ごとの違いを正確に把握し、それに合わせた戦略を取ることの重要性を感じました。 次に向かう意欲は? 今後は、これらの学びを自らの業務に生かし、市場ごとの特性を十分に理解する視点から再評価を進めていきたいと思います。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

クリティカルシンキング入門

業務効率アップの鍵を見つけた日

受講内容の価値とは? 受講した内容は非常に有益で、自分の視点を一段階広げてくれました。特に、問題解決のためのフレームワークを学ぶことで、日々の業務に対するアプローチを再評価する機会が得られました。この学びを活用し、今後はもっと効率的に仕事を進めていきたいと考えています。 実践的な知識はどう活かす? また、講義中に紹介された事例は非常に具体的で、自分の業務にも即座に応用できると感じました。このような実践的な知識は、理論だけでは得られない深い理解をもたらしてくれます。特に、チームでのコミュニケーションやリーダーシップに関する部分は、大いに参考になりました。 チーム成長のための次のステップ ここで学んだことを基に、自分自身だけでなくチーム全体が成長できるよう、今後も努力を続けていきます。この講義が提供する価値は非常に高く、受講して本当に良かったと思います。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

戦略思考入門

日々の意識が未来を創る

全体振返りで何を感じる? 今週は全体の振り返りを行いました。本講座では、ありたい姿に向けてどのように進め、実現の確率を上げるかについて学びましたが、既に忘れかけている項目があることに気づき、日々の意識がいかに大切かを改めて感じました。 成果施策の効果は本当? 数字で成果が見込みやすい施策については、現状の取り組みが本当に効果的かどうかを再評価し、その上で必要な改善を行っていきます。一方、要員の育成など成果が数値に現れにくい施策に関しては、シナリオ作りからフレームワークを再度適用する方針を明確にして取り組むこととします。 日々の業務意識はどう? また、Q1の回答にも記載しましたが、使わなければ忘れてしまう内容に対しては、皆さんが日々どのような意識で業務に取り組んでいるのかを再確認することが重要だと考えます。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

データ・アナリティクス入門

未知の平均値に挑戦

指標の基礎はどう? これまで平均値と中央値を用いた分析は行っていましたが、加重平均、幾何平均、標準偏差といった他の指標については十分に理解していませんでした。今回、これらの指標の基礎を学ぶ中で、その重要性を実感しましたが、実際に活用するとなるとまだ課題が多いと感じています。今後は、これらの考え方をさらに深め、実践的な使い方を模索していきたいと思います。特に、経営指標として必要な幾何平均については、実データを用いて分析に挑戦する予定です。 どんな分析を試す? 自社製品の原価と営利に関する調査・分析の中で、今回学んだ幾何平均を早速活用し、過去のデータを基に営利分析を実施します。また、部門ごとの工数分析では、業務に費やす時間だけでなく、関わる人数も考慮に入れて評価し、より客観的な分析を目指します。

クリティカルシンキング入門

受講生の本音、実践の軌跡

主語と述語の関係は? 文章作成において、まず主語と述語の対応関係を明確にすることが非常に大切です。小説などでは表現の多様性が評価される一方、ビジネスの現場では状況を的確に伝えるために、この基本が欠かせません。主語と述語のずれが誤解を招くリスクを伴うため、常に正確な関係を意識して文章を組み立てる必要があります。 誰が原因を探る? さらに、どのような前後関係の中で誰がどのような問題に直面しているのか、その原因と対応策を明確に示すことが求められます。結論から述べた上で、原因や複数の対策を検討し、ピラミッドストラクチャーを活用して論理的に構造化することが重要です。このアプローチは、定例の1オン1や業務報告など、さまざまなシーンで思考を整理し、伝える内容を明確にするために非常に有効です。

「業務 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right