リーダーシップ・キャリアビジョン入門

本音がひろがる1on1対話術

どの評価が正しい? 動機付け・衛生理論では、評価が不満足、不満ではない、満足、大変満足の4段階に分けられるとされています。しかし、結局のところ、人それぞれの考え方や感じ方が違うため、どの評価が正しいのか断定することは難しいと感じています。 新しい職場はどう? 来週から新たな職場での業務が始まり、近々メンバーとの1on1ミーティングを予定しています。この面談では、まず自分自身のことを十分に開示し、相手のモチベーションの源泉がどこにあるのかを探りたいと考えています。ただし、短時間の面談だけでは全てを把握しきれないため、初回の1on1の結果だけで先入観を持たないように注意したいと思います。 面談で本音は? 1on1ミーティングでは、自己開示をしっかりと行いながら、相手の業務内容だけでなく、仕事自体が楽しいか否か、その原因についても具体的に聞いていくつもりです。また、あらかじめ設定した面談の機会に限らず、日常のコミュニケーションにおいても主体的に接することで、より深くメンバーそれぞれの状況や感情を理解できればと考えています。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

マーケティング入門

見つける!なりたい自分への道

満足システムの意義は? 自分もユーザも満足できるシステムを開発・提供する重要性に、改めて気付かされました。現在目指しているキャリアは一般的には成長と捉えられていますが、自分自身にとって本当に成長なのか、真剣に考える必要があると感じます。どんな自分になりたいのか、日々の業務に追われて見落としがちですが、意識的に時間を取って考えることは大切です。 自己評価の方法は? 今回、ナノ単科の学習を通して、今一度自身の在り方を見直す機会を得ました。これを機に、今後も定期的に自己評価を行うための仕掛けが必要だと考えています。例えば、毎月リマインダーを設定し、なりたい自分像や現在の進捗状況を文字にして記録する方法を始めようと思います。 なりたい自分って何? 「なりたい自分はどんな人物か」「なぜそのように思うのか」「これまでの変化の中で、どのような出来事があったのか」「なりたい自分に近づくために今日から何をするのか」―こうした問いを自分自身に投げかけ、小さなことでも具体的に書き出していくことが、今後の成長に繋がると信じています。

アカウンティング入門

数字に迫る!企業評価の極意

財務三表の意味は? 業務で使用していた財務三表が、事業活動の全体像を把握し定量的に評価するためのツールであると再認識できたことは、有意義な学びでした。この経験を通して、企業評価の際にどこに着目すべきか、さらに深い理解が必要だと感じています。 管理や説明はどう? また、管理職として自社やチームの現状把握、さらには今後の方針検討に活かすことも目指しています。同時に、コンサルタントとしてクライアントに対し、定量的なデータだけでなく図表などの補助資料を活用し、より分かりやすく説明できるよう工夫することにも努めたいと考えています。具体的には、週次のレポートにおいてアカウンティング視点からの項目追加や精度向上を図るなど、数字の裏付けに基づいた分析を進めていく予定です。 分析をどう進める? 全体として、財務三表の再認識は、企業の強みや弱みを見極め、成長性や安定性を判断するための新たな視点を獲得する良い機会となりました。今後は、具体的なケースを通じて各財務表の評価ポイントを整理し、実践的な分析手法を身につけていきたいです。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

戦略思考入門

戦略的思考で描く未来への道筋

戦略の本質は? 戦略というのは、目的地を明確化し、その目的地に最短距離で到達するための方法を考えることを指します。具体的には、「何をやるべきか、何をやらざるべきか」を決定し、さらにそこに独自性を加えることが重要です。この点についての学びを得ました。 未来はどう描く? 個人的な視点から考えると、今期の目標を達成するための取り組みとして、ジョブ評価シートの作成などが挙げられます。組織としては、オフィスが目指す方針や、メンバーを支援する際に戦略を活用したいと思います。特に、未来を描くことが足りないと感じているので、目標を具体的に思い描くことを意識していきたいです。 問題をどう整理? 現状の問題は、場当たり的な対応に陥ってしまうことです。これを改善するため、業務を整理し、将来を考えるための時間を確保することが必要です。計画を先延ばしにしないよう、ある程度のロードマップを描き、手を動かす前にゴールを明確にする時間を意識的に設けます。ゴールを明確にするためには、まず問いを立てることから始めることが大切です。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

クリティカルシンキング入門

知識から実践へ―反省が未来を創る

知識と実践のギャップは? グロービスの学習では、毎週のミニレポート作成を通して「知っている」と「使える」の違いを実感しました。ライブ授業の中で問われた際、インプットしたはずの内容がすぐには出てこなかったこともあり、知識を業務で実際に使うためには、継続的な反復練習や学んだことを意識的に活用する機会を作ることが重要だと感じています。 社内評価はどう変わる? また、社内のモチベーションサーベイの分析業務についても、これまで数値の比較に終始していた自分のアプローチを見直す機会となりました。今回、ライブ授業で学んだ分析のステップを業務に取り入れることを決意しました。 分析の手順は何? 具体的には、まず分析の目的を明確にするために問いを立て、その問いを共有することが大切であると認識しています。次に、情報を工夫し、必要に応じて新たな列を追加したり、割合を算出したり、データの並び替えを行います。最後に、グラフへと視覚化することで、数値だけでは見えにくかった情報を一目で把握できるようにする工夫を実践していきます。

データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

データ・アナリティクス入門

業績分析を変える「比較実践法」

比較分析で何を見つける? 「分析とは比較」という言葉が胸に響きました。この気づきは、新しい考え方というより、これまで業務で実践しているはずが、その意識を持たずに進めていたことへの反省です。意識せずに進めていたため、分析手法や精度、スピードにムラがありました。 月次業績評価のポイントは? 毎月の決算分析において、その月の業績を評価するためには、他の月と比較することが欠かせません。売上が増えたのに利益が減少している場合や、各項目の増減率が一致しない場合などに、その原因を分析する際には、どのように条件付けをすればよいのかをよく考えたいと思います。 効果的な比較の習慣とは? さらに、前月との比較に加え、今年度の平均や前年同月・前年平均との比較も行う習慣をつけたいと思います。また、益となった特殊要因を将来も続けられるようにし、損となった特殊要因についてはその発生を抑えるため、比較分析で終わらずに対策や方針をしっかりと検討していきたいです。

「業務 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right