戦略思考入門

範囲の経済性を活かす新規事業の未来への挑戦

経済性の範囲とは何か? 範囲の経済性は非常に印象深かったです。規模の経済性との比較で考えると理解しやすかったです。範囲の経済性として、優秀な人の社内異動や中途入社採用もこれに該当すると思いました。また、開発投資や設備投資についても、ある企業がもともとフィルム事業で培った技術を医薬品事業に応用するという例も挙げられます。 新規事業の成功戦略は? 私自身、規模の経済性だけでなく、範囲の経済性にも注意していきたいと考えています。現在、新規事業領域のスケール化を担当しているため、優秀な人材を社内外から確保し、新規事業領域における顧客の困りごととその解決手段の精度を上げるために、シナジー効果を意識したいと思います。また、各種バリューチェーンにおいて既存リソースの活用を検討し、事業メカニズムを理解した上で応用できる部分を応用したいと考えています。 行動計画はどう進める? 具体的な行動計画として、 ・8月までに外部環境・内部環境、自社事業の強みと弱み、自社事業メカニズム(コスト構造含む)を改めて整理すること ・9月に関係部門メンバーとのチームビルディングを行うこと ・10月に顧客の困りごと仮説立案および検証行動計画を立案すること ・11月から国内外でのマーケットリサーチおよびフィードバックを実施すること これらを踏まえ、範囲の経済性を最大限に活用していきたいと考えています。

データ・アナリティクス入門

経営者気分で学ぶ仮説解決術

データと仮説でどう考える? これまでの総復習を通して、まずデータを用いて問題の所在を読み解き、原因を仮説思考で考察し、その上で対策を検討するフレームワークを再確認できました。どんな状況においても、ロジカルに物事をとらえ、データを基に仮説を立てることで問題解決の道筋を描く大切さを強く実感しました。 なぜ一貫性が感じられる? また、ストーリー全体に一貫性があり、学びの流れが頭にしっかりと残りました。経営者になった気分で対策を検討できたことも、非常に印象に残っています。 マーケ実践はどう進む? マーケティングの分野では、日頃の活動にデータドリブンな視点を取り入れることで、施策の有効性の比較、優先順位の設定、費用対効果や効果の見通しなど、具体的な対策を実行に移す自信が持てました。施策の判断軸となる評価項目や様式を統一することで、正しい比較ができる点も大変有用だと感じました。 病院DXで何を改善? 一方で、病院のDX推進においては、導入率のトラッキングや向上施策、トレーニングの立案など、データに基づいた仮説と検証を繰り返す取り組みが今後の課題となると同時に、実践的な対策として役立つと考えています。目的を明確にし、過不足なくデータを収集、複数のメンバーと多角的な視点で仮説をたて検証することで、事前に設定した評価項目を使いながら、効果を正確に測る仕組みを構築する重要性を再認識しました。

マーケティング入門

Z世代の心を掴む新しいマーケティング戦略

ターゲット顧客の真のニーズとは? 今回の総合演習では、ターゲット顧客の不満から真のニーズを把握し、行動パターンに基づいて体験価値を付け加えることで、新しい市場で顧客を勝ち取る方法を学びました。特に、スマートフォンが当たり前となったZ世代が急速にトレンドを変えていることを実感しました。彼らの媒介を見る視点や、枠にとらわれない考え方は、新しい発想の基盤となり、Z世代について深く考える良いきっかけとなりました。 自社商品に付加価値をどう与える? 今回の『顧客が価値を感じる体験を付加価値とする』という考え方は、私たちの自社商品においても非常に重要です。しかし、我々の製品は気軽に手に取れるものではないため、新たなアプローチが必要だと感じました。その一方で、手軽に手に取れないという特性を逆手にとり、数少ない『体験できる場』に重きを置くことで、顧客が「行ってみたい」と感じるようにするのも一つの手法として考えられます。 次なるマーケティング戦略 具体的には以下の点を考えてみました: - 日常の中で触れる、または目に留まる商品にプラスαの価値を持たせる方法を検討する。 - 体験価値とは何か、その体験によってどのような感情が生まれるのかを自ら検証する。 - マーケティングの本を読み、さらに理解を深める。 このようにして、顧客の体験を重視する新しいマーケティング戦略を考えていきたいと思います。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

データ・アナリティクス入門

目的で広がる分析の世界

分析の目的は何? 分析は、目的に応じた比較作業として位置づけています。分析の際には、まず目的を明確にし、その目的に沿った仮説検証に必要な項目とデータを収集、分類します。そして、比較対象や基準を設定することで、結果が意思決定につながるよう意識しています。 データの見せ方は? また、データの性質に合わせた見せ方を心がけることが大切です。データ分析で明らかにしたい事柄に最適な表現方法を選ぶことで、無駄なデータ加工を避け、例えば帰還した機体を基に無駄のない結論を導くといった論拠のあるアプローチが可能になります。 仮説と経験はどう関係する? 実際、Webサイトのアクセス解析を日常的に行っているため、データから仮説を立てる経験はあります。しかしながら、売上向上や認知拡大、新規ユーザの獲得といった本来の目的達成のために、どの分析手法を用いるべきか、その根拠となるデータ解析に結びつけることが必要です。 追跡設定の必要は? さらに、解析ツールにおけるデフォルト設定以外のトラッキングに関しては、どのデータを収集すべきかが不明瞭になりがちです。よって、まず目的をはっきりさせ、必要な要素を明確に把握することを心がけています。また、取得できるデータの切り出し方次第で得られるインサイトは異なるため、どのデータがあればどのような推論が可能になるかを意識し、分析スキルの向上を目指しています。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

戦略思考入門

視点改革で未来を創る

他者の視点はどう活かす? ビジネスシーンにおいて、経営者、顧客、他者の目線という異なる視点を意識しながら物事を俯瞰することの重要性を改めて実感しました。こうしたフレームワークの習慣が、組織全体に議論のレベルアップを促すカルチャーの醸成につながると感じます。 新ビジネスの進め方は? また、新規ビジネスを推進する際には、次の3点が鍵となると思います。まず、全社横断で活動するために、他部門にとってのメリットを意識すること。次に、ブレインストーミングなどで出た他者の意見を一旦アクションプランに盛り込み、どの段階で実行に移すかを仮の予定として組み込むこと。そして、PDCAサイクルの「C」(改善)の段階で、当初計画とのギャップに着目し、フレームワークを用いて課題の仮検証を行うことです。 強みの捉え方はどう? 自社の強みをどのように定義するかという点については、マネージャークラスの起案者はどうしても主観が入りやすく、やや過大評価になる傾向があると感じています。一方で、現場の担当者は自社の強みに対し、より厳しい評価を下すことが多い印象です。 データ評価のポイントは? さらに、フレームワークによる分析を行う際には、自社評価の前提条件に対するバイアスを可能な限り排除するため、市場シェアや自社財務などの幅広い公表データを十分に活用する必要があるのか、と疑問を抱かざるを得ません。

デザイン思考入門

発想の種が未来を創る

どんなアイデアが光る? ライブ授業の録画で皆さまのプロトタイプを拝見し、多くの気づきと刺激を受けました。たとえば、バッグ自体ではなくその中に入れる荷物の軽量化という発想や、ロボットやドローンによる荷物運搬という発想には、驚きとワクワクを感じました。 学びをどう実践する? 課題解決型学習プログラムの取り組みの中で学んだ〝デザイン思考〟を実践していきたいと思います。先日、付属高校の探究授業の成果発表会に招待されましたが、あまり斬新とは言えない内容が多いように感じました。後に、大学の経営学の教員が事前にビジネスフレームワークの基礎をレクチャーしていたと知り、アイデア部分が十分に発展していなかったのではないかと考えました。若者本来の自由な発想を引き出すファシリテーションの重要性を改めて実感し、今回の学びから貴重な知見を得ることができたと思います。 隠れたニーズは何だろう? 共感や課題定義においては、顕在ニーズはすでに解決されている可能性があるため、誰も気づいていない潜在ニーズの発見に力を注ぎたいと考えています。また、発想に関しては「量が質を担保する」という考えを念頭に、さまざまなアイデアを積極的に出す環境づくりが重要だと感じました。さらに、プロトタイプ検証は一度経験してからが本当のスタートであるという先生の言葉は、学生たちにもぜひ伝えていきたいと思います。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

データ・アナリティクス入門

仮説の一歩で見える世界

出発点はどう捉える? 仮説は、出発点に過ぎないという考え方を大切にしています。分析を行う際、つい一つの可能性に絞ってしまいがちですが、実際には多様な視点から課題を捉えることが求められます。そこで、3C(顧客・自社・競合)や4P(商品・価格・流通・販促)のフレームワークを活用し、情報を体系的に整理することで、全体像を的確に把握するよう努めています。 MECE原則は何? また、分析を進める上でMECE(漏れなく、ダブりなく)の原則を意識することは、論理の抜けや重複を防ぐために非常に重要です。この考え方に基づき、仮説の精度を高め、実効性のある施策の立案へとつなげる努力をしています。 可能性はどこに? 今後の行動計画としては、業務で仮説を立てる際に「他に可能性はないか?」という視点を意識し、複数の仮説を構築するよう訓練していきます。さらに、日常業務において定期的に3Cや4Pのフレームワークを活用し、情報を構造的に整理するプロセスを取り入れていく予定です。 振り返りの意義は? 分析や資料作成の際には、必ず自分自身でMECEの観点からセルフチェックを行い、論理の偏りや抜け漏れがないか確認する時間を確保します。また、仮説の検証結果やそのプロセスを定期的に振り返ることで、思考の偏りや成功パターンを明確にし、実践的な仮説思考力の向上を目指していきたいと考えています。

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right