クリティカルシンキング入門

問いをクリアにする思考術の大切さ

なぜ問いを意識する? 日常的に、現在の自身の目的や問いを意識しているつもりですが、十分ではないと感じています。特に意識したいのは以下の2点です。まず、本当にその問いが正しいのかを検証すること。そして、その考え方や作業が問いに沿っているのかを確認することです。 議論はどう整理すべき? この問いの重要性については、あらゆる業務(資料作成、メール、周囲とのディスカッション)に活用できると考えています。特にディスカッションでは、議論が発散することがよくあります(それが目的の場合もありますが)。これは、そもそもの問いが不明確であったり、各人が立てている問いにばらつきがあることが原因と考えられます。そのため、議論をより円滑で意味のあるものにするために、「我々が目指すべきゴールは何か」という問いを、自分や周囲に問いかけるようにしたいと思います。 どう問いを明確にする? 最初に行うべきは、自分の問いを可視化し、明文化することです。そして、その問いが適切かどうか内省し、必要であれば同僚と確認し合うことにしたいと考えています。問いを明確にするためには構造化が重要だと考えており、現時点ではその力が十分でないため、構造化の学習(書籍を読む、試してみること)も並行して行っていきたいと思います。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

データ・アナリティクス入門

初挑戦A/Bテストで効果実感!

A/Bテストの魅力は? A/Bテストについて初めて知り、その有用性を実感しました。特にキャンペーンやPR施策の効果検証において、どの広告媒体が最も有効か、施策の目的を達成できるかを検証するのに非常に役立つと感じました。目的と仮説を明確にすることが重要であると同時に、関係者間で共通認識を持つ機会にもなると学びました。また、季節や傾向の変動を避けるため、同時期に実施することや、1要素ずつテストすることが必須であると理解しました。 広告パターンの効果は? シンプルで運用しやすく、低コストでリスクも少ないA/Bテストは、現在実施中の交通系ICカードを活用した各種キャンペーンのPR施策に早速活用したいと考えています。具体的には、広告内容を3パターン程度用意し、どのパターンが利用者に最も訴求するのか、現状とテスト後のクリック数を確認して効果を見極めたいと思います。 投稿時間はどう検証? また、広告を投稿する時間帯についても現状はほぼ午前に固定しているため、午後に投稿した場合のクリック数や、電子マネー決済金額の変化などを検証したいと考えています。さらに、ターゲットを絞り、例えば会社帰りの会社員を意識して午後(夕方)の投稿に変更するなど、仮説を立てた上で効果検証を進める予定です。

データ・アナリティクス入門

問題解決の4ステップで仕事が変わる

問題解決のステップを学ぶ 問題解決には4つのステップがあることを学びました。これらのステップは以下の通りです。 1. What:問題の明確化 2. Where:問題箇所の特定 3. Why:原因の分析 4. How:解決策の立案 このステップで仮説を立てて思考することで、以下の効果が期待できます。 1. 検証マインドの向上と、高まる説得力 2. 関心、問題意識の向上 3. 判断や行動のスピードアップ 4. 行動の精度向上 計算ミスをどう防ぐ? 例えば、給与や退職金の計算業務では、計算ミスが発生することがあります。その際にはまず、正しく再計算することが最優先されますが、今後同様のミスを防ぐためには原因を特定し、再発防止策を考え実施する必要があります。これを行うためには、問題解決の4つのステップが必須となります。 チームへの意識定着を図るには? 自分自身だけでなく、他のメンバーも問題解決の4つのステップを意識して思考できるように指導することが必要です。そのために、今回学んだ内容を毎週開催するチームミーティングで共有し、日々の業務の中でもメンバー一人ひとりがしっかり意識し自分のものにできているかを質問を投げかけることで確認し、チーム全体に定着させていくつもりです。

デザイン思考入門

共感から始めるデザイン思考の魅力

人間中心の考え方とは? WEEK1のライブ授業で特に印象に残った点として、共感から始まる人間中心の考え方がありました。また、「万人受けするものは売れない」という教訓から、常に「誰のために作るのか」を念頭に置くことの重要さを学びました。さらに、相手の気持ちなど目に見えない部分まで含めて考える必要があることが強調されていました。そして、自分の感情を色で表現し、それを伝えることの難しさも実感しました。 デザイン思考に潜む魅力 デザイン思考において、優しさや愛情がその根底にあるのではないかと感じ、より興味が湧いてきました。普段、私はtoCの業務に携わっており、満足度や継続利用率の向上に向けたコミュニケーションを行っています。これまではなるべく全員が満足できるものを提供しようと考えていましたが、今後は誰に届けたいのかを意識していきたいと思います。 3月のイベントに向けた準備 3月のイベント開催に向けては、次のステップを考えています。前回の参加者データを確認し、目的に合ったターゲットの再設定を行います。また、データの整理やその理由付けを行い、社内で相談の上最終決定をします。そして、訴求内容を変更し(サムネイルや文言の調整)、開催後には前回との比較や効果検証を行う予定です。

戦略思考入門

仮説で切り開くDX推進の道

情報はどう補う? 総合演習を通じて感じたことは、設問の情報だけでは答えられない問題がいくつかあり、不足している情報を取得する必要があるということです。それでも情報が不足する場合があり、その際はある程度仮説を立てて物事を考える必要があります。この点は今回の事例に限らず、実際の業務でも同様だと思いました。100%の情報が揃うことはまずなく、不足する情報は自分で調査をし、または人から聞いて知識を埋めなければならないと感じました。それでもなお未知の部分は、仮説を立てて結論を導き出す力が求められます。 新部署で挑戦する? 10月からDX推進部に異動しました。ここでは、従来の定型業務がなく、正解のない課題に取り組む必要があります。新しいプロジェクトの一つひとつにおいて、今回の学びを活かせると確信しています。特に、フレームワークを活用した現状の整理や仮説思考が重要です。 e-learningで学ぶ? まずは、ある程度答えがある事柄、つまり前提知識については、会社のe-learningを活用して知識を深めたいと思います。そして、新しいことの効果を検証する際には必ず仮説思考が必要であり、100点満点ではないにせよ、今ある情報をもとに効果を試算することに挑戦していきたいです。

クリティカルシンキング入門

分析の力で未来を切り拓く

分析の全体像を考慮すべき? 分析を行う際、細部にばかり気を取られて「全体の定義」を見落としがちであることに改めて気づかされました。分解の方法には、層別分解、変数分解、プロセス分解の3つがありますが、特にプロセス分解を忘れがちなため、今回の学習を通じて意識的に習慣化したいと思います。 数字の分析はどう活用? 私の業務では常に数字の分析が求められますが、以下のような場面で特に役立つと考えています。 まず、市場分析では、常に変化する市場をどの切り口で見るか、仮説を持って分解することが重要です。 次に、売り上げ分析では、変数分解に偏りがちですが、顧客や営業のプロセス分解を行うことで、見落としを防ぐことができると感じています。 成果を検証する方法は? また、中間レビューにおいては、期初に立てた戦略に対し、得られた結果を仮説とともに分解し、検証を行うことができます。 分析を進める際は「全体の定義」を考慮し、抜け漏れや重複がないかを細かく確認することが大切です。分解の前には仮説を持って切り口を考え、プロセス分解を忘れずに実践することも重要です。 自然に思考するためには? これらを意識することで、考える力を習慣づけ、自然と思考できる状態を目指します。

データ・アナリティクス入門

最適な判断基準を見つけるヒントとABテストの活用法

判断基準の選定に迷う時は? 業務において、プロセスごとに整理して効果を考えることは普段から行っているが、最適な案を選ぶための判断基準については意識が足りていなかったことに気づいた。判断基準の選定に迷うことが多かったが、今後は意識的に取り組みたい。また、思考を広げることは自分一人では難しいことがあると実感している。これまで、ABテストを意識して使ったことがなかったので、何か2つ以上のものの効果を検証したいときには、これを思い出したい。 広告提案時の改善策は? 広告提案時には、これまでの「広告を試してみないか」という提案方法を見直し、「効果がある広告を検証してみないか」と伝えることで改善が図れると思った。広告1種類のみで出稿が停止されるリスクも防ぐことができるだろう。 プロセスの解像度を上げるには? さらに、プロセスを意識して考えることは、現在取り組んでいる範囲だけでなく、自身の営業計画などにおいても有効な切り口となる。実例として、広告提案時に2つの効果があると考えられる施策を提案する際は、ABテストでの実施を打診してみることを考えたい。また、営業計画を立案する際には、プロセスの解像度を上げることが重要であり、そのために上長と壁打ちをすることを実践したい。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

クリティカルシンキング入門

データ分解の新たな視点で未来を開く

数字分解の効果は? 数字を分解することで、データの解像度が向上します。分解の方法によって、見やすくなる効果があります。また、分け方の工夫によって差が現れたり隠れたりするため、多様な分け方が必要です。より多くのデータと分け方が組み合わさることで、分析の精度と確度に信頼性が増します。仮に思ったような結果が得られなくても、その分析が不要だったと分かるだけでも価値があります。そして、新たな分析を試みる契機となります。 グラフ作成の落とし穴は? データを分析する際、時には望む結果が出るようにグラフを作成してしまうことがあります。しかし、今回の学びから、精度と確度を上げるためにはデータのさらなる分解が必要であると感じました。今後は、MECE分解の3原則を意識してデータ分析を進めていきたいと思います。 再検証は必要? まず、過去の不具合事例を再度分析し直してみようと思います。一度結論を出した事象を再検証することで、今回の学びがどれほど有効であったかを確かめ、同様の結論に至るかどうかを確認するのは興味深い取り組みです。データ分析は非常に重要で、誤った原因を見つけてしまうと、対策や改善がすべて無駄になる可能性があります。そのため、より多くの分解を心がけたいと思います。

データ・アナリティクス入門

内省の力が未来を創る

内省はどう進める? 内省的観察については、仮説検証型、行為一体型、外部フィードバック型の3つのアプローチがあることを学びました。実務では仮説検証型に偏りがちですが、変化の激しい現代においては、状況の変化をとらえながら行動と連動して内省を進める行為一体型が重要だと感じました。 学習動機をどう捉える? また、学習動機に関しては、ある理論モデルに沿って内発的な動機と外発的な動機を考えることの意義を学びました。具体的には、内側に起因する充実思考、訓練思考、実用思考と、外側に起因する関係思考、自尊思考、報酬思考という区分に基づいており、チームメンバーそれぞれの内発的動機づけをより一層支援する必要性を感じました。特に、評価目標に含まれていない業務に対しても、その必要性を相手の立場に立って理解してもらえるよう説明することが大切だと思います。 外発動機の見える化は? さらに、外発的動機については、データ分析の結果などを可視化した資料をより多く共有することで、目的に即した行動や目標の具体的なブレイクダウンを個々にサポートする重要性を実感しました。新しい指標を取り入れるなど、自身の行動変容やマインドセットの転換にも積極的に取り組んでいく必要があると感じました。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right