データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

マーケティング入門

顧客の心を動かす名づけ戦略

なぜ講義は印象深い? 「どう魅せるか?」の講義で最も印象に残ったのは、「商品が顧客のイメージと合っていないと売れない」という点です。たとえば、カップタイプのカレーライスは売れないのに、別の表現に変えることで商品の魅力が伝わり、売れるようになるという事例は、新鮮な学びでした。また、新しい商品が普及するための5条件について考える機会も得られ、とても有意義でした。 ウォークマンの魅力は? 具体例として、ウォークマンについて5条件に当てはめて検証した点が印象的です。まず、従来は家でしか楽しめなかった音楽を持ち歩けるという比較優位が挙げられます。次に、カセットテープという従来の形式を踏襲しており、適合性の面でも障壁が低くなっています。また、使い勝手の良さがわかりやすさにつながり、試用可能性においては既存のイヤホンやカセットテープを利用できたことが有利に働きました。さらに、新しいアイデアが取り入れられていることが一目でわかる可視性も評価でき、ウォークマンは5条件すべてに当てはまることが確認されました。 なぜ名前がわかりにくい? また、自分の商品開発では、まずターゲット市場を絞ることから始めています。これにより自然とセグメンテーションやターゲティングが行われるのですが、よく見受けられるのは、名称が「わかりにくい製品名」になってしまう点です。正確に表現しようとするあまり、長くなったり、差別化ばかりを強調してしまうことが原因です。 どう商品名を選ぶ? 「どう魅せるか?」では、商品名の重要性も強調されています。顧客の視点に立ち、最もイメージと合致する名称が何かを見極めることが求められます。たとえば、展示会の名称を決める際には、顧客が直感的に理解できるかどうかをチェックし、新規事業を生み出す際には、あらかじめイノベーション普及の5条件に照らして検証することが大切だと感じました。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

クリティカルシンキング入門

数字の工夫で見つけた新発見の旅

数字活用のコツは? 数字を活用するためには、「加工の仕方」、「分け方の工夫」、「分解の留意点」を意識することが重要です。業務では数値を頻繁に使用しますが、「加工の仕方」には特に問題を感じていません。ただ、「分け方の工夫」に関しては、機械的に分けることが多かったことに気づきました。機械的に分ける場合と、柔軟に分けることで異なるグラフ結果が得られるという点は非常に新鮮でした。 上司へどう伝える? 上司へ説明する際には、数字がハイレベルで理解できることが重要です。そのため、今後は数字の分け方に注目し、客観的でわかりやすい資料作成に努めたいです。「分解の留意点」においては、MECEを活用し、全体をモレなくダブりなく定義し、分析することを心がけます。一度出した回答も再検証し、常に正しいかを確認することで、最短で正しい回答を導き出したいと思います。回答を出すとすぐに実践してしまう癖があるので、注意する必要があります。 プレゼンの工夫は? 「分け方の工夫」は、上司へのプレゼンテーションや報告にすぐに活用できます。具体的には、KPIやプロジェクト進捗において、達成に必要なものやすべきことを数値で分解し、機械的ではなく柔軟にグラフ化することで、視覚的にわかりやすく解決策を見つけやすくします。また、今週学んだ内容は業務全般に活用できるため、有意義でした。忘れないように反復して身につけたいです。 資料作成のポイントは? 現在準備しているKPIやプロジェクト進捗報告のプレゼン資料には、特に「MECE」、「分け方の工夫」、「分解の留意点」を取り入れたいです。重複する部分もありますが、MECEを用いて層別分解、変数分解、プロセス分解を試み、新たな発見をし、異なるグラフを用いることで説得力を高めたいと思います。回答の検証も行い、より効果的なプレゼンテーションにしたいと考えています。

データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

マーケティング入門

柔軟思考で切り拓く市場戦略

提供方針は合っていますか? 「ものを売る」際に、誰に何を提供するのかという基本的な方針は、商品開発の初期から考慮すべきだと感じました。しかし、視野が狭くなると新たなポジショニングに気づく余地がなくなり、既存の新規顧客層を逃すリスクもあるため、常に顧客目線で多角的に商品を検証する必要があると実感しました。固定観念にとらわれず、柔軟な視点を持つことが大切だと思います。 ターゲットは正しく? また、ターゲティングに関する6つの評価基準が存在することを知り、感覚的なセグメント分けから論理的なアプローチに切り替えることができました。これにより、具体的な目的設定や対策案を構築できるようになり、より効果的なマーケティング戦略を描けると感じています。 数値化の意義は? 商品開発の現場では、6Rを数値化・可視化することが重要です。市場には既に多くの価値が創造された商品が溢れているため、新たに参入する商品の価値や提案力を判断するためにも、これらの指標が不可欠だと考えています。 企画見直しはどう? 現職においては、ポジショニングを起点に企画を見直し、顧客の記憶に残るプロモーションを検討していく予定です。自社がどのような価値を提供し、どの部分で強みを発揮できるかを明確にするため、ポジショニングマップを活用しながら、自社と競合他社の違いを再評価し、プロモーションの方向性を見直す必要があると感じます。 戦略は再構築すべき? さらに、ポジショニングマップとパーセプションマップに乖離が生じた場合、企業はどのような対応策を講じるべきかが重要な課題です。たとえば、自社商品の高性能が十分に伝わっていないとすれば、別の切り口でマーケティング戦略を再構築するのか、あるいは高性能をより効果的に伝える方法を模索するのか、具体的な事例を踏まえて知りたいと思いました。

戦略思考入門

一呼吸で読み解く経営戦略の変革

競合とどう向き合う? 顧客や目先の競合に意識が偏りやすい中、3CやVRIOといったフレームワークを用い、一呼吸おく習慣を実践でルーチン化する必要性を実感しました。 差別化の秘訣は? また、差別化戦略においては、持続可能性の観点を踏まえながら、自社の強みを中立的な視野で検討することが重要だと感じています。自社の強みが、時間軸を含めた模倣リスクの大きさにどの程度さらされているかを、ネガティブな視点からもしっかり捉える必要があります。 投資効果はどう見る? さらに、実現可能性の面では、投資に値する市場であるかどうかを費用対効果の観点から分析するなど、経営全体を俯瞰する視点の重要性を改めて認識しました。 強化策はどう進める? これまでのバリューチェーンの検証に加え、顧客のニーズ、特に潜在ニーズを把握するための技術情報やマーケティング活動から得られるデータをもとに、自社の強みをさらにどう強化すれば差別化に最も効果的かを、中期経営計画やM&A検討プロセスに反映させていきたいと考えています。 スキルはどう磨く? 私はこれまで、製造業向けの自動化や省力化のビジネスに取り組んできました。かつては、多少のオーバースペック品を低価格で提供することが最良とされるハードビジネスの現場で活動していましたが、近年は、IoT、DX、サーキュラーエコノミーといった社会のトレンドに即したソフトビジネスへとシフトしています。その中で、エンジニアリングスキルやコンサルティング能力、また経営学、会計、ファイナンス、マーケティング、さらには各工学分野など幅広い知識の向上が求められており、マルチタスクでのスキルアップが必要となっています。皆さまは、日々のストイックな取り組みの中で、どのようにしてモチベーションを維持されているのか、ぜひポジティブなご意見をお聞かせいただければ幸いです。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

戦略思考入門

戦略で学ぶ!時間と戦うビジネス学

トレードオフとは何か? 戦略における選択や「捨てる」というプロセスを実践する中で、トレードオフの概念について学びました。これは、何かを追求する際に別の何かを犠牲にしなければならないという理論です。この考え方は、ビジネスだけでなく日常生活でも無意識のうちに実践していることで、とても身近に感じられました。 優先順位の付け方の重要性 ビジネスの場面では、特に時間という限られた資源に直面することが多く、必然的に何かを捨てる選択を迫られます。今回、優先順位の付け方を実践的に学ぶことで、これまで直感に頼っていた判断に客観的な視点を加えることができるようになりました。その結果、判断軸がぶれることなく、問題解決にスピード感を持って取り組むことができると感じました。 スタック・イン・ザ・ミドルのリスク また、コスト・リーダーシップ戦略と差別化戦略というトレードオフの関係にある要素を両立しようとすると、「スタック・イン・ザ・ミドル」に陥るリスクがあることも学びました。 効果的なコンテンツ企画とは? 今後、国際戦略の一環としてイン・アウトバウンドを促進するために、新たなコンテンツ企画を進める予定です。その際、効果的な戦略を考えるとともに、工数と集客効果のバランスにも配慮したいと思います。具体的には、インタビュー企画を検討していますが、広報活動においてはあまり凝った制作をせず、限られた時間内で魅力的なコンテンツを制作することを心掛けています。 媒体選定と効果検証のポイント まずは、どの媒体にコンテンツを掲載するのかを決め、その効率性を考慮します。過去の閲覧数やフォロワー数を参考に、より良い結果を得られる媒体に集中して時間を使い、その後、仮説が正しかったか検証します。そして、予期しない結果が得られた場合には、次回のコンテンツ企画に向けて修正案を練る予定です。

戦略思考入門

選択の先に輝く未来

満足度向上の秘訣は? まず、限られたリソースの中で、従業員がどのように「給与」「キャリア」「ワークライフバランス」「福利厚生」などの要素を組み合わせるとより高い満足度(効用)を得られるかを考える「無差別曲線」の考え方を、人事領域に応用することが有効です。こうしたアプローチにより、会社の方針と従業員の価値観が合致しているかどうかを検証し、施策の優先順位を見極めることができます。 意思決定のバランスは? また、意思決定においては必ずトレードオフが伴います。たとえば、人材開発への投資が短期的には人件費効率を低下させる可能性があるというように、ある施策を採用することで別の面が犠牲になる場合、そのバランスを明確にして経営陣と十分に共有することが重要です。これにより、「すべてを取る」ではなく、「何を捨て、何を採るか」という具体的な意思決定を促せます。 戦略連動で成果は? さらに、企業戦略と人材戦略を連動させることも欠かせません。クライアント企業がコストリーダーシップ型か差別化型かをまず見極め、あるいはその判断が曖昧である場合は、その点を指摘しながら一緒に方向性を模索します。コストリーダーシップ型の場合は、標準化された研修プログラムや明確なKPI管理など、効率的な人材運用を提案し、差別化型の場合は、独自のリーダーシップ開発や従業員体験のデザインなど、独自性を際立たせる施策を展開することが考えられます。 現場で意識する点は? 日常の業務としては、クライアントとのヒアリング時に「この施策を採る場合、何を優先し、何を後回しにするのか」というトレードオフの観点を取り入れること、そして、人材施策を効用の観点で整理・可視化する練習を重ねています。また、企業の競争戦略と人材戦略がしっかりと噛み合っているかを随時確認することで、最適な施策を提案できるよう努めています。

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right