マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

データ・アナリティクス入門

本質を見抜くヒントがここに

フレームワークはどう活かす? ロジックツリーやMECEのフレームワークについて改めて学ぶ機会がありました。すべてを漏れなく、重複なく進めようとすると議論が停滞する可能性があるため、まずは注目すべき要所を決めた上でアイデア出しを行い、その後に漏れや重複を検証する方法が効果的だと感じました。実務上も、末端の階層にまで拘りすぎないことが重要だと思います。 戦略の組み立て方は? 戦略は「重要課題の特定とその課題を解決するための具体的な行動計画」と定義しています。そのため【What】で問題を明確化し、【Where】で問題箇所を特定し、【Why】で原因を分析し、【How】で解決策を立案するという順序が非常に大切だと感じました。正しい課題設定ができれば、その課題の半分以上は解決に近づいているという言葉にも共感するところです。 問題の構造は見えてる? 表面的な問題に目を向けがちですが、問題を構造的に捉えることが最も重要です。たとえば、全体の受注率だけでなく、個々の受注率や各セグメントごとの受注率、さらには失注要因などを多角的に分析しなければ、真因にたどり着くことは難しいでしょう。問題の構造を要素ごとに分解し、どの要素がトリガーとなっているかを可視化することが鍵だと改めて感じました。 具体化はどう進める? 面倒に思えるかもしれませんが、問題を構成する要素を頭の中だけでなく、文字や図で具体的に表してみることが大切です。手書きでメモを取ったり、マインドマップを作成するなどして、漏れや重複に気づけるよう工夫してみると良いでしょう。ただし、これらのフレームワークはあくまで道具であり、型にはめすぎたり神格化しないよう、柔軟に活用することが求められます。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

戦略思考入門

気づきと戦略で切り拓く新たな一歩

戦略思考はどう感じた? 今週は都合によりグループワークに参加できなかったのが残念でしたが、本講座を通じて戦略的思考の重要性と、その実践が仕事やプライベートの両面で効果を発揮することを学びました。講座を進める中で、これまで上司の言葉や行動に見えていなかった背景が理解できたのも、大きな収穫でした。特にグループワークでは、異なる業界の事例に触れながら、参加者の意見やアドバイスを聞くことで、理解をさらに深める機会となりました。 受け身からどう脱却? 学んだことを実践するにはまだスキルが不足していると感じていますが、常に一歩踏み込んで考え、できるだけ自分の言葉で説明する習慣を身につけたいと思います。また、自身の業務について振り返った際、自発的な取り組みだけでなく、やるべき業務や決まった方針に対しても無意識に受け身になっていたことを反省し、今後は自分の思いを込めたゴール設定と実現に向けた道筋作りに注力していきたいと考えています。 競争力はどう分析? さらに、業務を進める中で、他社に追いつくことに重きを置いていた部分があったと気づきました。今後は、自社ならではの優位性や競争力をしっかりと分析し、優先順位を明確にすることで、より効果的な取り組みを進めていく所存です。 次に向けた一歩は? 今年度の振り返りでは、戦略やゴール設定、課題に対する打ち手が十分に効果を発揮していたかを検証し、次年度に向けた課題と取組みの方向性を明確にする予定です。フレームワークを用いた分析や、競争力・優位性の観点での優先的な項目の整理、さらには顧客への新たな価値提供を目指した目標設定に取り組むとともに、学んだ知識をメンバーと共有していきたいと考えています。

データ・アナリティクス入門

効果的な仮説立案で施策展開が変わる

仮説立案の重要性とステップ 仮説を考える際のポイントとして、まずは複数の仮説を立てることが重要です。一つに決め打ちせず、複数案を考え、その中から絞り込むプロセスを取るべきです。また、仮説同士に網羅性を持たせるため、異なる切り口で仮説を立てることが求められます。この際、3Cや4Pといったフレームを使うことで、切り口を広げることができます。これらのフレームを定着できるように、繰り返し意識して使用することが重要です。 問題解決と結論の仮説分類 仮説はその目的に応じて、「問題解決の仮説」と「結論の仮説」に大きく分類されます。それぞれ、過去・現在・将来といった時間軸に応じて仮説の中身が変わります。仮説と検証はセットで行うことで、より説得力を持たせることができます。 効果的な施策展開への道 現在、施策展開が乱立している状況を整理し、ハンドリングできるようにしたいと考えています。より効果的かつ効率的な施策展開のためには、仮説を常に意識して立てることが必要です。現状では議論の中である程度のところで決め打ちになってしまっているように思います。より効果的かつ効率的な運営を行うために、問題解決のプロセスに沿った仮説立証を定着させ、日々の業務に意識的に取り入れることが重要です。 フレームワーク活用と効果検証 また、仮説を立てるためのフレームワークについても学び、問題や課題の提起を具体的な施策に関して行います。その際、都合の良い情報になっていないかに留意しながら、データを集めて施策の効果検証を行うことが求められます。効果検証の整理をするためにも、適切な仮説立てとその検証を通じて、施策展開をより効果的かつ効率的に進めていきたいと考えています。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

クリティカルシンキング入門

イシュー中心で見えた問題解決の真髄

イシュー特定の重要性とは? 「イシュー:「今ここで、答えを出すべき“問い”」というテーマについて考え始める際に、まずイシューを特定することが重要です。常に「問い」を中心に考え、それを組織内で共有し、一貫して押さえ続けます。組織全体で協力して解決を図るためです。 何に注意して進めるべきか? 注意点として、いきなり打ち手に飛びつかないことが挙げられます。目先の課題形成や改善策を実行するだけでは、本質的な解決に至りません。課題の根本原因を抑えることが重要です。施策立案前には仮説を構築し、施策の効果検証を行います。また、上司や同僚、取引先との情報共有や報告も欠かせません。 イシューの共有がなぜ重要か? 自身のメイン業務である「仮説構築~施策立案~効果検証」において、イシューの特定やイシュー中心の施策進行、イシューの共有は必須スキルと感じています。本質的な課題を特定するスキルに加えて、組織全体に齟齬なく共有できるスキルを合わせることで、組織全体で正しく方向性を認識できるよう努めてまいります。 精度向上のために何をすべきか? 次に、現状分析の精度向上についてです。自社だけではなく、競合他社のデータも収集し分析することで精度を高めます。また、短期的にKPIの確認を行い、早期に問題を特定可能な体制を作ります。 フィードバックの活用法は? さらに、社内外からフィードバックをもらうことも大切です。内部ミーティングにおいては、マーケティングチームや他の関連部門と定期的な会議を開催し、見落としている可能性のあるイシューや課題を共有します。また、外部のコンサルタントへ意見を求め、独自の視点でイシューを評価してもらいます。

マーケティング入門

市場を掘り起こす新発見と戦略

ポジショニングはどう? 「誰に売るか?」という問いに対する答えをどのように構築するかを学びました。ポジショニングによって、特定のニーズを持つ消費者に刺さる商品を生み出し、埋もれていた市場を掘り起こすことができるというのは新たな発見でした。また、同じ商品であってもコンテクストが変わることで、新たな価値を新たなターゲットに提案することができるという点も大きな学びでした。多くの最新技術が軍事目的から生まれたことがありますが、使用シーンを変えることで、生活の利便性を高めたり課題を解決したりする技術に変わることも一例と考えられます。しかし、ポジショニングとターゲティングの違いについてはまだ自分の中で明確に理解できていない部分がありました。 セグメントの再検証は? 編成プランを考える際にはまず、ユーザーをどのような軸でセグメンテーションするか考え直す必要があります。性別や年齢といったセグメントが本当にコンテンツ消費に合っているのかを再検証したいと思います。その上で、各セグメントをターゲティングできる企画を持っているのか確認してみたいと考えています。加えて、韓国ドラマコンテンツがなぜこれほどヒットするのか、その消費者の正確な属性(年齢や性別以外の要因)を分析し、韓国ドラマファン層をどう取り込むかについて考えてみたいです。 実行ステップは? 具体的には、志向性でのセグメントが可能かエンジニアや戦略チームに相談したり、消費者インサイト調査チームと協力して志向性別に調査が可能かを検討します。そして、ポジショニングマップを作成し、業界での自社のポジションを把握するとともに、消費者から見た自社のポジションを確認することを目指します。

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right