戦略思考入門

フレームで見える業界の未来

業界動向、どう分析できる? 業界動向をフレームワークに当てはめて考察することで、内容の理解が容易になります。例えば、人口減少という外部環境の変化を背景に、水道業界では事業体の広域化や統合化が進んでいます。これは、水道施設の料金徴収などにかかる固定費用を広域化により分散し、コスト削減を狙う規模の経済性の一例として捉えられます。このように、フレームワークを活用することで、業界のメリットや改善点が具体的に把握できるのです。 ニュースはどう捉える? また、ニュースなどの動向を注視する際には、それぞれの現象がどのフレームワークに該当するかを意識すると効果的です。外部環境の変化ではPEST分析のどの要素に属するのか、また事業再編の場合はどのフレームワークに基づいているのかを考慮することで、より論理的かつ具体的に状況を理解できるようになります。

戦略思考入門

勇気ある捨てるで本来の自分へ

「捨てる」は必要? 講座全体を振り返る中で、印象に残ったのは「捨てる」という言葉に対する否定的なイメージです。一見、不要なものをすべて除去するようなネガティブな印象を受けますが、実は本来のありたい姿に近づくために必要な考え方であると再認識しました。不要なものを当たり前とするのではなく、理論に基づいたデータの解析や選択が不可欠であると感じました。 現状リセットはどう? 自部門の業務にあてはめると、不具合対策の一環で設計時に追加された検査作業など、当たり前になっている工数を見直す必要があります。まずは「捨てる=元に戻す」という視点で、現状をリセットすることから取り組み、そのためのデータ収集を確実に行います。その上で、元の状態に戻した後の改善策は、現場の努力の成果として、現場目線と会社目線の両面から業務を推進していきたいと考えています。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

仮説から見える実践の道

目的は何でしょうか? まず、分析に着手する前に、目的意識を強く持つことが重要だと感じています。どのようなデータを用い、どのような加工を施して活用するのかを熟考することで、分析の精度が高まると思います。 仮説設定の秘訣は? 次に、仮説を立てることが分析の出発点であり、実際の数値や製造指標を軸にポイントを絞り込むことが有効です。数字を単に羅列するだけではなく、各項目の重要度や意味を十分に考慮したうえで比較分析を行うことが大切です。 分析結果はどう活かす? また、これらの分析は、次の四半期の実績検討に向けた具体的な資料となり得るため、単なるデータの把握に留まらず、実践的なアウトカムにつなげていく必要があります。日常業務においても、データの活用状況を見直し、改善のヒントとする取り組みが求められていると実感しています。

クリティカルシンキング入門

グラフで探る新たな気づき

グラフ選定はどう? データ分析においては、単に数字の羅列を眺めるだけでなく、さまざまな視点から検討し、グラフ化することの重要性を実感しました。グラフを作成する際は、どのグラフが適切か、軸区切りや要素の分け方をどうするかなど、一つの方法に固執せず、「本当にそれだけで良いのか?」という視点を持ちながら、複数のグラフを試作することで新たな傾向や示唆に気付くことができました。 伝え方はどう? また、研修で「わかりやすく伝える」ことを重視する観点から、スライドに掲載するデータの見せ方にも改善の余地があると感じました。同一のグラフであっても、絶対値と相対値のどちらが適切かを検討したり、視覚的に訴える矢印を加えるなどの工夫が効果的です。多少の手間や時間はかかるものの、それらの工夫が最終的に伝えたい内容を確実に伝えるための近道になると思います。

クリティカルシンキング入門

主張と根拠で磨く思考の一歩

問いと答えで学ぶ理由は? 今週はクリティカルシンキングの振り返りを行い、WEEK1の自分の回答を再確認しました。問いと答え、すなわち主張と根拠のシンプルな構成が印象的で、問いを明確に設定し、その問いだけに集中して回答するという行為の難しさを実感しました。 お客様の課題は核心? また、商談時にはお客様からシステム構築による課題解決のご相談をいただくことが多い中で、お客様の課題が何か、本当にその課題が核心なのか、そしてその解決策が改善につながるのかを、主張と根拠をセットで検討する必要があると感じました。講義で「早く答えを導き出すには常に考え続けることが大切」という話が印象深く、思考の切り替えを意識して反復することで、そのスピード感を自分のものにしたいと思います。今後は、何かを考える際に必ず主張と根拠を意識する行動を心がけていきます。

データ・アナリティクス入門

実践で変える!問題解決の第一歩

試す手法は何だろう? 問題の要因がある程度明確になったら、試しやすい手法で課題解決に向けた取り組みを実際に試すことが重要です。たとえば、既存の手法と定量的に比較できるA/Bテストのような方法を設計し、実践することが望まれます。 改善はどう実現する? また、課題の分析だけで満足せず、実際に改善を施して目的を実現することが肝要です。データ分析を行う際には、最終的に何を実現したいのかという目的を常に念頭に置く必要があります。 仮説はどう組み立てる? 一方、データ分析の手法に囚われ過ぎると、単にデータを出すことに多くの時間がかかり、問題解決に辿り着かない恐れがあります。したがって、まずは問題の要因を特定し、その後、有識者とのディスカッションや壁打ちを通じて、改善のための仮説を迅速に立案・実行できるように取り組むことが大切です。

クリティカルシンキング入門

読みたくなる!提案資料作りのポイント

スライド作成のポイントは? 何となくスライドを作ることが多いので、今後はより丁寧に作成するように意識します。その際、使用するグラフやデータで何を伝えたいかをしっかり考えることが重要です。特に提案資料については、提案内容によってプロジェクトの推進が決まることがあるため注意が必要です。 メールでの工夫がもたらす効果は? 日頃のメール作業でもアイキャッチなどを意識し、人に読んでいただけるよう工夫します。メールの内容に応じて、重要な部分の色を変えたり、タイトルを工夫したりすることが有効です。 技術提案書での見直しポイントは? また、技術提案書などでは、グラフの位置や伝えたい内容を整理しながらスライドを作成するよう努めます。さらに、上長や同僚からフィードバックをもらい、人が読みやすく伝わりやすい文章になるよう改善していきます。

戦略思考入門

声がぶつかる選択の岐路

なぜ選択肢を排除するの? 捨てる選択肢を持たない必要性を改めて実感しました。現在、役所の窓口サービスの改善に取り組む中で、現場の意見と幹部層の意向が大きく異なっています。 どうして意見が分かれるの? 現場では、サービスの提供過多が職員の負担増や来庁者の待ち時間増加につながるため、業務量の削減を望んでいます。一方、幹部層はサービスの質を維持することを重視し、業務量を減らさない方針です。両者の主張にはそれぞれ理由があり、両立は難しいと感じています。 どの解決策が最適? このような状況を踏まえ、どちらを選ぶべきか、また住民にとって最も有益なサービスとは何かという理想像を明確にする必要があります。そのためにも、理想を実現する根拠やデータを集め、双方が納得できる落とし所を見つけながら調整を進めていきたいと考えています。

アカウンティング入門

価値を見つめる毎日の学び

顧客の価値は何か? 事業を運営する上で大切なのは、まず対価を支払ってくれる顧客が存在することです。そして、その顧客にどのような価値を提供するかが事業の出発点であると実感しました。仕入れや費用は、あくまで価値提供の手段に過ぎないという認識が改めて必要だと感じています。 振り返りの意義は? また、常に顧客に対してどのような価値を提供できているかを振り返ることが重要です。最新の情報を収集し、顧客に役立つ内容を提供する努力を怠らず、日々の業務の振り返りや学びを意識することが改善への糧となると実感しています。 手段構築の工夫は? 目的を明確にし、そのための手段について検討する際は、柔軟な発想が求められます。従来の定型的なパターンに縛られず、他者の考えを取り入れることで、新たな気付きや発見が得られることに驚きを覚えています。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。
AIコーチング導線バナー

「改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right